Spaces:
Runtime error
Runtime error
erwold
commited on
Commit
·
2d66916
1
Parent(s):
29fa1d0
Initial Commit
Browse files
app.py
CHANGED
@@ -11,6 +11,9 @@ import math
|
|
11 |
import logging
|
12 |
import sys
|
13 |
|
|
|
|
|
|
|
14 |
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
15 |
|
16 |
# 设置日志
|
@@ -51,49 +54,92 @@ class FluxInterface:
|
|
51 |
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
|
52 |
|
53 |
def load_models(self):
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
|
61 |
-
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder").to(self.dtype).to(self.device)
|
62 |
-
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2").to(self.dtype).to(self.device)
|
63 |
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
|
64 |
-
|
65 |
-
# Load VAE and transformer
|
66 |
-
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux/vae").to(self.dtype).to(self.device)
|
67 |
-
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux/transformer").to(self.dtype).to(self.device)
|
68 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
|
69 |
|
70 |
-
#
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
#
|
74 |
-
connector = Qwen2Connector().to(self.dtype)
|
75 |
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
|
76 |
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location='cpu')
|
77 |
-
# Move state dict to dtype before loading
|
78 |
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
|
79 |
connector.load_state_dict(connector_state)
|
80 |
connector = connector.to(self.device)
|
81 |
-
|
82 |
-
|
83 |
-
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).to(self.device)
|
84 |
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
|
85 |
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location='cpu')
|
86 |
-
# Move state dict to dtype before loading
|
87 |
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
|
88 |
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
89 |
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
90 |
|
91 |
-
#
|
92 |
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]:
|
93 |
-
model
|
94 |
-
|
|
|
|
|
95 |
|
96 |
-
logger.info("
|
97 |
|
98 |
self.models = {
|
99 |
'tokenizer': tokenizer,
|
@@ -107,11 +153,11 @@ class FluxInterface:
|
|
107 |
'connector': connector
|
108 |
}
|
109 |
|
110 |
-
#
|
111 |
self.qwen2vl_processor = AutoProcessor.from_pretrained(
|
112 |
-
self.MODEL_ID,
|
113 |
subfolder="qwen2-vl",
|
114 |
-
min_pixels=256*28*28,
|
115 |
max_pixels=256*28*28
|
116 |
)
|
117 |
|
@@ -121,7 +167,13 @@ class FluxInterface:
|
|
121 |
vae=vae,
|
122 |
text_encoder=text_encoder,
|
123 |
tokenizer=tokenizer,
|
124 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
def resize_image(self, img, max_pixels=1050000):
|
127 |
if not isinstance(img, Image.Image):
|
|
|
11 |
import logging
|
12 |
import sys
|
13 |
|
14 |
+
import os
|
15 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512,expandable_segments:True'
|
16 |
+
|
17 |
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
18 |
|
19 |
# 设置日志
|
|
|
54 |
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
|
55 |
|
56 |
def load_models(self):
|
57 |
+
if self.models is not None:
|
58 |
+
return
|
59 |
|
60 |
+
import gc
|
61 |
+
torch.cuda.empty_cache()
|
62 |
+
gc.collect()
|
63 |
+
|
64 |
+
logger.info("Starting model loading...")
|
65 |
+
|
66 |
+
try:
|
67 |
+
# 1. 首先加载小型模型和tokenizer
|
68 |
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
|
|
|
|
|
69 |
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
|
|
|
|
|
|
|
|
|
70 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
|
71 |
|
72 |
+
# 2. 加载并优化CLIP text encoder
|
73 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
74 |
+
self.MODEL_ID,
|
75 |
+
subfolder="flux/text_encoder",
|
76 |
+
torch_dtype=self.dtype,
|
77 |
+
device_map="auto" # 让模型自动管理显存
|
78 |
+
)
|
79 |
+
|
80 |
+
# 3. 加载T5 encoder
|
81 |
+
text_encoder_two = T5EncoderModel.from_pretrained(
|
82 |
+
self.MODEL_ID,
|
83 |
+
subfolder="flux/text_encoder_2",
|
84 |
+
torch_dtype=self.dtype,
|
85 |
+
device_map="auto"
|
86 |
+
)
|
87 |
+
|
88 |
+
# 清理一次显存
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
gc.collect()
|
91 |
+
|
92 |
+
# 4. 加载VAE
|
93 |
+
vae = AutoencoderKL.from_pretrained(
|
94 |
+
self.MODEL_ID,
|
95 |
+
subfolder="flux/vae",
|
96 |
+
torch_dtype=self.dtype,
|
97 |
+
device_map="auto"
|
98 |
+
)
|
99 |
+
|
100 |
+
# 5. 加载Transformer
|
101 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
102 |
+
self.MODEL_ID,
|
103 |
+
subfolder="flux/transformer",
|
104 |
+
torch_dtype=self.dtype,
|
105 |
+
device_map="auto"
|
106 |
+
)
|
107 |
+
|
108 |
+
# 再次清理显存
|
109 |
+
torch.cuda.empty_cache()
|
110 |
+
gc.collect()
|
111 |
+
|
112 |
+
# 6. 加载Qwen2VL
|
113 |
+
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
|
114 |
+
self.MODEL_ID,
|
115 |
+
subfolder="qwen2-vl",
|
116 |
+
torch_dtype=self.dtype,
|
117 |
+
device_map="auto"
|
118 |
+
)
|
119 |
|
120 |
+
# 7. 加载其他小组件
|
121 |
+
connector = Qwen2Connector().to(self.dtype)
|
122 |
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
|
123 |
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location='cpu')
|
|
|
124 |
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
|
125 |
connector.load_state_dict(connector_state)
|
126 |
connector = connector.to(self.device)
|
127 |
+
|
128 |
+
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype)
|
|
|
129 |
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
|
130 |
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location='cpu')
|
|
|
131 |
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
|
132 |
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
133 |
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
134 |
|
135 |
+
# 设置eval模式和关闭梯度
|
136 |
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]:
|
137 |
+
if hasattr(model, 'eval'):
|
138 |
+
model.eval()
|
139 |
+
if hasattr(model, 'requires_grad_'):
|
140 |
+
model.requires_grad_(False)
|
141 |
|
142 |
+
logger.info("Models loaded successfully")
|
143 |
|
144 |
self.models = {
|
145 |
'tokenizer': tokenizer,
|
|
|
153 |
'connector': connector
|
154 |
}
|
155 |
|
156 |
+
# 初始化processor和pipeline
|
157 |
self.qwen2vl_processor = AutoProcessor.from_pretrained(
|
158 |
+
self.MODEL_ID,
|
159 |
subfolder="qwen2-vl",
|
160 |
+
min_pixels=256*28*28,
|
161 |
max_pixels=256*28*28
|
162 |
)
|
163 |
|
|
|
167 |
vae=vae,
|
168 |
text_encoder=text_encoder,
|
169 |
tokenizer=tokenizer,
|
170 |
+
)
|
171 |
+
|
172 |
+
except Exception as e:
|
173 |
+
logger.error(f"Error loading models: {str(e)}")
|
174 |
+
torch.cuda.empty_cache()
|
175 |
+
gc.collect()
|
176 |
+
raise
|
177 |
|
178 |
def resize_image(self, img, max_pixels=1050000):
|
179 |
if not isinstance(img, Image.Image):
|