Spaces:
Runtime error
Runtime error
from flask import Flask, jsonify, request | |
from pathlib import Path | |
import sys | |
import torch | |
import os | |
from torch import autocast | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline | |
import streamlit as st | |
import io | |
from PIL import Image | |
from huggingface_hub import login | |
# HF_TOKEN = os.environ.get("HF_TOKEN") | |
login(token='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') | |
# pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-model", safety_checker=None, torch_dtype=torch.float16).to("cpu") | |
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
# pipe.enable_xformers_memory_efficient_attention() #if gpu is available | |
# g_cuda = None | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[0] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) | |
app = Flask(__name__) | |
import requests | |
API_URL = "https://api-inference.huggingface.co/models/Divyanshu04/Finetuned-model" | |
headers = {"Authorization": "Bearer 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"} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.content | |
# @app.route("/", methods=["POST"]) | |
def generate(): | |
with st.form(key="Form :", clear_on_submit = True): | |
prompt = st.text_area(label = "prompt", key="pmpt") | |
negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt") | |
num_samples = st.number_input("No. of samples", step=1) | |
Submit = st.form_submit_button(label='Submit') | |
if Submit: | |
image_bytes = query({"inputs": prompt,}) | |
# You can access the image with PIL.Image for example | |
image = Image.open(io.BytesIO(image_bytes)) | |
# guidance_scale = 7.5 | |
# num_inference_steps = 24 | |
# height = 512 | |
# width = 512 | |
# g_cuda = torch.Generator(device='cpu') | |
# seed = 52362 | |
# g_cuda.manual_seed(seed) | |
# with autocast("cpu"), torch.inference_mode(): | |
# images = pipe( | |
# prompt, | |
# height=height, | |
# width=width, | |
# negative_prompt=negative_prompt, | |
# num_images_per_prompt=num_samples, | |
# num_inference_steps=num_inference_steps, | |
# guidance_scale=guidance_scale, | |
# generator=g_cuda | |
# ).images | |
st.image(image) | |
else: | |
st.write('<Enter parameters to generate image>') | |
# driver function | |
if __name__ == '__main__': | |
generate() |