Spaces:
Runtime error
Runtime error
File size: 2,574 Bytes
5b512a0 7ce3041 5b512a0 7ce3041 11e5f93 5b512a0 95c1ed8 5b512a0 1cbe66a 5b512a0 ce82d39 5b512a0 ce82d39 5b512a0 95c1ed8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
from flask import Flask, jsonify, request
from pathlib import Path
import sys
import torch
import os
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline
import streamlit as st
# model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive
# pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-sd-vae", safety_checker=None, torch_dtype=torch.float32).to("cuda")
pipe = DiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-sd-vae", safety_checker=None, torch_dtype=torch.float32).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
g_cuda = None
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
app = Flask(__name__)
# @app.route('/', methods = ['GET', 'POST'])
# def home():
# if(request.method == 'GET'):
# data = "Text2Image"
# return jsonify({'service': data})
# @app.route("/", methods=["POST"])
def generate():
# prompt = request.form['prompt']
# negative_prompt = request.form['Negative prompt']
# num_samples = request.form['No. of samples']
prompt = st.text_area(label = "prompt", key="pmpt")
negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt")
num_samples = st.number_input("No. of samples")
res = st.button("Generate", type="primary")
if res:
guidance_scale = 7.5
num_inference_steps = 24
height = 512
width = 512
g_cuda = torch.Generator(device='cuda')
seed = 52362
g_cuda.manual_seed(seed)
# commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half")
with autocast("cuda"), torch.inference_mode():
images = pipe(
prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=g_cuda
).images
return {"message": "successful"}
else:
st.write('<Enter parameters to generate image>')
# driver function
if __name__ == '__main__':
generate() |