Divyanshu04 commited on
Commit
1cbe66a
·
1 Parent(s): 5200ca1
Files changed (2) hide show
  1. Text2image-api.py +0 -81
  2. app.py +2 -2
Text2image-api.py DELETED
@@ -1,81 +0,0 @@
1
- from flask import Flask, jsonify, request
2
- from pathlib import Path
3
- import sys
4
- import torch
5
- import os
6
- from torch import autocast
7
- from diffusers import StableDiffusionPipeline, DDIMScheduler
8
- import streamlit as st
9
-
10
- # model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive
11
-
12
- # pipe = StableDiffusionPipeline.from_pretrained(model_path, safety_checker=None, torch_dtype=torch.float32).to("cuda")
13
- # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
14
- # pipe.enable_xformers_memory_efficient_attention()
15
- # g_cuda = None
16
-
17
- FILE = Path(__file__).resolve()
18
- ROOT = FILE.parents[0] # YOLOv5 root directory
19
- if str(ROOT) not in sys.path:
20
- sys.path.append(str(ROOT)) # add ROOT to PATH
21
- ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
22
-
23
- app = Flask(__name__)
24
-
25
- # @app.route('/', methods = ['GET', 'POST'])
26
- # def home():
27
- # if(request.method == 'GET'):
28
-
29
- # data = "Text2Image"
30
- # return jsonify({'service': data})
31
-
32
-
33
- # @app.route("/", methods=["POST"])
34
- def generate():
35
-
36
- # prompt = request.form['prompt']
37
- # negative_prompt = request.form['Negative prompt']
38
- # num_samples = request.form['No. of samples']
39
-
40
- prompt = st.text_area(label = "prompt", key="pmpt")
41
- negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt")
42
- num_samples = st.number_input("No. of samples")
43
-
44
- res = st.button("Reset", type="primary")
45
-
46
- if res:
47
-
48
- guidance_scale = 7.5
49
- num_inference_steps = 24
50
- height = 512
51
- width = 512
52
-
53
- g_cuda = torch.Generator(device='cuda')
54
- seed = 52362
55
- g_cuda.manual_seed(seed)
56
-
57
- # commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half")
58
-
59
- with autocast("cuda"), torch.inference_mode():
60
- images = pipe(
61
- prompt,
62
- height=height,
63
- width=width,
64
- negative_prompt=negative_prompt,
65
- num_images_per_prompt=num_samples,
66
- num_inference_steps=num_inference_steps,
67
- guidance_scale=guidance_scale,
68
- generator=g_cuda
69
- ).images
70
-
71
- return {"message": "successful"}
72
-
73
- else:
74
- return {"message": "Running.."}
75
-
76
-
77
-
78
-
79
- # driver function
80
- if __name__ == '__main__':
81
- generate()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -37,8 +37,8 @@ def generate():
37
  # negative_prompt = request.form['Negative prompt']
38
  # num_samples = request.form['No. of samples']
39
 
40
- prompt = st.text_area(placeholder = "prompt", key="pmpt")
41
- negative_prompt = st.text_area(placeholder = "Negative prompt", key="ng_pmpt")
42
  num_samples = st.number_input("No. of samples")
43
 
44
  res = st.button("Reset", type="primary")
 
37
  # negative_prompt = request.form['Negative prompt']
38
  # num_samples = request.form['No. of samples']
39
 
40
+ prompt = st.text_area(label = "prompt", key="pmpt")
41
+ negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt")
42
  num_samples = st.number_input("No. of samples")
43
 
44
  res = st.button("Reset", type="primary")