Spaces:
Runtime error
Runtime error
Commit
·
5200ca1
1
Parent(s):
deefcce
changes
Browse files- Text2image-api.py +81 -0
Text2image-api.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, jsonify, request
|
2 |
+
from pathlib import Path
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
from torch import autocast
|
7 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
# model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive
|
11 |
+
|
12 |
+
# pipe = StableDiffusionPipeline.from_pretrained(model_path, safety_checker=None, torch_dtype=torch.float32).to("cuda")
|
13 |
+
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
14 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
15 |
+
# g_cuda = None
|
16 |
+
|
17 |
+
FILE = Path(__file__).resolve()
|
18 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
19 |
+
if str(ROOT) not in sys.path:
|
20 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
21 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
|
22 |
+
|
23 |
+
app = Flask(__name__)
|
24 |
+
|
25 |
+
# @app.route('/', methods = ['GET', 'POST'])
|
26 |
+
# def home():
|
27 |
+
# if(request.method == 'GET'):
|
28 |
+
|
29 |
+
# data = "Text2Image"
|
30 |
+
# return jsonify({'service': data})
|
31 |
+
|
32 |
+
|
33 |
+
# @app.route("/", methods=["POST"])
|
34 |
+
def generate():
|
35 |
+
|
36 |
+
# prompt = request.form['prompt']
|
37 |
+
# negative_prompt = request.form['Negative prompt']
|
38 |
+
# num_samples = request.form['No. of samples']
|
39 |
+
|
40 |
+
prompt = st.text_area(label = "prompt", key="pmpt")
|
41 |
+
negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt")
|
42 |
+
num_samples = st.number_input("No. of samples")
|
43 |
+
|
44 |
+
res = st.button("Reset", type="primary")
|
45 |
+
|
46 |
+
if res:
|
47 |
+
|
48 |
+
guidance_scale = 7.5
|
49 |
+
num_inference_steps = 24
|
50 |
+
height = 512
|
51 |
+
width = 512
|
52 |
+
|
53 |
+
g_cuda = torch.Generator(device='cuda')
|
54 |
+
seed = 52362
|
55 |
+
g_cuda.manual_seed(seed)
|
56 |
+
|
57 |
+
# commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half")
|
58 |
+
|
59 |
+
with autocast("cuda"), torch.inference_mode():
|
60 |
+
images = pipe(
|
61 |
+
prompt,
|
62 |
+
height=height,
|
63 |
+
width=width,
|
64 |
+
negative_prompt=negative_prompt,
|
65 |
+
num_images_per_prompt=num_samples,
|
66 |
+
num_inference_steps=num_inference_steps,
|
67 |
+
guidance_scale=guidance_scale,
|
68 |
+
generator=g_cuda
|
69 |
+
).images
|
70 |
+
|
71 |
+
return {"message": "successful"}
|
72 |
+
|
73 |
+
else:
|
74 |
+
return {"message": "Running.."}
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
# driver function
|
80 |
+
if __name__ == '__main__':
|
81 |
+
generate()
|