Spaces:
Runtime error
Runtime error
File size: 2,088 Bytes
5b512a0 7ce3041 5b512a0 c1d6f67 6a49dc6 2be6eb1 6a49dc6 522dbe7 d69d53c 522dbe7 6a49dc6 11e5f93 6d87ed3 11e5f93 5b512a0 95c1ed8 5b512a0 02f0f1d 5b512a0 02f0f1d 5b512a0 02f0f1d 5b512a0 522dbe7 5b512a0 522dbe7 5b512a0 6d87ed3 5b512a0 ce82d39 5b512a0 95c1ed8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
from flask import Flask, jsonify, request
from pathlib import Path
import sys
import torch
import os
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline
import streamlit as st
from huggingface_hub import login
# HF_TOKEN = os.environ.get("HF_TOKEN")
login(token='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')
pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-model", safety_checker=None, torch_dtype=torch.float32).to("cpu")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
# pipe.enable_xformers_memory_efficient_attention() #if gpu is available
g_cuda = None
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
app = Flask(__name__)
# @app.route("/", methods=["POST"])
def generate():
with st.form(key="Form :", clear_on_submit = True):
prompt = st.text_area(label = "prompt", key="pmpt")
negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt")
num_samples = st.number_input("No. of samples", step=1)
Submit = st.form_submit_button(label='Submit')
if Submit:
guidance_scale = 7.5
num_inference_steps = 24
height = 512
width = 512
g_cuda = torch.Generator(device='cpu')
seed = 52362
g_cuda.manual_seed(seed)
with autocast("cpu"), torch.inference_mode():
images = pipe(
prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=g_cuda
).images
st.image(images)
else:
st.write('<Enter parameters to generate image>')
# driver function
if __name__ == '__main__':
generate() |