Spaces:
Runtime error
Runtime error
File size: 68,529 Bytes
b57ed91 3e64737 2c68bd8 3e64737 ce1eb3c efc52d4 cd3e466 e881a6a 0459869 9dc6d98 5c437e2 018fcd1 66cb301 ce1eb3c 9b7ad24 ce1eb3c cd3e466 9dc6d98 cd3e466 0459869 b198b5a 55e2010 e21d148 b198b5a 0459869 b02a8be db322cc cd3e466 b198b5a ce1eb3c efc52d4 db322cc 5b7059f db322cc 5b7059f db322cc 33513a8 db322cc b198b5a 55e2010 db322cc 55e2010 0459869 b198b5a 55e2010 5b7059f db322cc b198b5a 55e2010 b02a8be 55e2010 db322cc 55e2010 0459869 55e2010 db322cc 55e2010 db322cc 55e2010 5b7059f db322cc 33513a8 e881a6a db322cc e881a6a b02a8be ce1eb3c cd3e466 ce1eb3c 5a3b92c d62b229 ce1eb3c e581856 b02a8be e581856 41f6b04 e581856 41f6b04 e581856 ce1eb3c 41f6b04 ce1eb3c 41f6b04 ce1eb3c ce9371b ce1eb3c e581856 41f6b04 ce1eb3c b02a8be ce1eb3c 41f6b04 66cb301 e881a6a 33513a8 fcf1816 a0e5ea9 e96bacb dc1d757 e96bacb a0e5ea9 fcf1816 f8e1794 a0e5ea9 fcf1816 b02a8be fcf1816 0459869 f8e1794 fcf1816 f8e1794 fcf1816 f8e1794 fcf1816 cd3e466 b02a8be fcf1816 cd3e466 b02a8be fcf1816 929de97 fcf1816 e881a6a 5c437e2 f17f847 0d7fd90 f17f847 5c437e2 33513a8 5c437e2 e96bacb 5c437e2 e96bacb 41f6b04 b02a8be 5c437e2 b02a8be ce9371b e96bacb 5c437e2 e96bacb 5c437e2 e96bacb 5c437e2 33513a8 e96bacb 33513a8 e96bacb 55e2010 e96bacb 33513a8 5c437e2 55e2010 33513a8 5c437e2 55e2010 e96bacb 33513a8 5c437e2 e96bacb 33513a8 5c437e2 e96bacb 5c437e2 33513a8 5c437e2 e96bacb 33513a8 5c437e2 e96bacb 5c437e2 e96bacb 5c437e2 e96bacb 5c437e2 e96bacb 33513a8 e96bacb 33513a8 e96bacb 55e2010 b02a8be 55e2010 b02a8be e96bacb 5c437e2 f8e1794 33513a8 f8e1794 5c437e2 f8e1794 33513a8 f8e1794 33513a8 f8e1794 33513a8 f8e1794 5c437e2 f8e1794 9dc6d98 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 33513a8 018fcd1 db322cc 018fcd1 ce1eb3c e581856 f8e1794 e581856 ce1eb3c cd3e466 f8e1794 0d7fd90 a0e5ea9 ce1eb3c 0d7fd90 a0e5ea9 0d7fd90 b02a8be 55e2010 a0e5ea9 33513a8 a0e5ea9 6f8fb84 018fcd1 b02a8be 018fcd1 fcf1816 ce1eb3c 55e2010 ed548e3 f8e1794 0e95f56 6f8fb84 ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 0e95f56 97d65ae b02a8be ce1eb3c ed548e3 ce1eb3c 97d65ae ce1eb3c 97d65ae b02a8be 97d65ae ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c 0e95f56 6f8fb84 ce1eb3c 97d65ae 9dc6d98 97d65ae 0e95f56 97d65ae 48e62d8 ce1eb3c b02a8be 41f6b04 ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c b02a8be 41f6b04 b02a8be 97d65ae 9dc6d98 ce1eb3c 97d65ae ce1eb3c 97d65ae ce1eb3c f640af2 97d65ae 0459869 ce1eb3c b02a8be 97d65ae ce1eb3c 41f6b04 b02a8be 97d65ae a703d91 97d65ae a703d91 97d65ae a703d91 97d65ae 9dc6d98 97d65ae 9dc6d98 97d65ae 9dc6d98 97d65ae f640af2 97d65ae a703d91 97d65ae 9dc6d98 97d65ae a703d91 0459869 97d65ae 3e64737 97d65ae 9dc6d98 97d65ae 48e62d8 b02a8be 48e62d8 b02a8be 48e62d8 b02a8be 48e62d8 b02a8be 97d65ae 48e62d8 b02a8be 48e62d8 b02a8be 48e62d8 b02a8be 48e62d8 0e95f56 ce1eb3c 97d65ae b02a8be 97d65ae efc52d4 f8e1794 efc52d4 ed548e3 f8e1794 9dc6d98 97d65ae b02a8be 9dc6d98 efc52d4 97d65ae efc52d4 b02a8be efc52d4 ce1eb3c 97d65ae efc52d4 97d65ae efc52d4 ed548e3 97d65ae efc52d4 018fcd1 f8e1794 97d65ae 018fcd1 97d65ae efc52d4 f8e1794 018fcd1 97d65ae 018fcd1 efc52d4 018fcd1 b02a8be 97d65ae efc52d4 ed548e3 97d65ae ed548e3 97d65ae ed548e3 efc52d4 97d65ae b02a8be 97d65ae ed548e3 efc52d4 ce1eb3c 97d65ae efc52d4 97d65ae 48e62d8 b02a8be 48e62d8 97d65ae b02a8be 48e62d8 b02a8be 97d65ae efc52d4 a703d91 97d65ae efc52d4 97d65ae efc52d4 97d65ae efc52d4 97d65ae a703d91 97d65ae a703d91 efc52d4 97d65ae b02a8be 97d65ae b02a8be 97d65ae b02a8be 97d65ae b02a8be 97d65ae b02a8be 97d65ae b02a8be 97d65ae efc52d4 97d65ae efc52d4 97d65ae 3af8029 97d65ae 3af8029 97d65ae b02a8be 97d65ae efc52d4 97d65ae 0459869 f8e1794 41f6b04 0459869 a703d91 97d65ae efc52d4 97d65ae 0459869 0e95f56 97d65ae efc52d4 97d65ae 0459869 0e95f56 97d65ae efc52d4 97d65ae 0459869 0e95f56 97d65ae efc52d4 97d65ae 0459869 ce1eb3c 97d65ae efc52d4 97d65ae 0459869 a703d91 e881a6a 9dc6d98 efc52d4 97d65ae ce1eb3c 6e6aad7 ce1eb3c 0d7fd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 |
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import html
from pathlib import Path
import fitz # PyMuPDF
import pytesseract
from PIL import Image
import io
import secrets
import string
from huggingface_hub import HfApi, HfFolder
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import logging
import asyncio
from functools import lru_cache
import hashlib
from concurrent.futures import ThreadPoolExecutor
from pydantic import BaseModel
import plotly.express as px
# ========== CONFIGURATION ==========
PROFILES_DIR = "student_profiles"
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"]
MAX_FILE_SIZE_MB = 5
MIN_AGE = 5
MAX_AGE = 120
SESSION_TOKEN_LENGTH = 32
HF_TOKEN = os.getenv("HF_TOKEN")
SESSION_TIMEOUT = 3600 # 1 hour session timeout
# Initialize logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
filename='transcript_parser.log'
)
# Model configuration - Using smaller model
MODEL_NAME = "deepseek-ai/deepseek-llm-1.3b"
# Initialize Hugging Face API
if HF_TOKEN:
try:
hf_api = HfApi(token=HF_TOKEN)
HfFolder.save_token(HF_TOKEN)
except Exception as e:
logging.error(f"Failed to initialize Hugging Face API: {str(e)}")
# ========== MODEL LOADER ==========
class ModelLoader:
def __init__(self):
self.model = None
self.tokenizer = None
self.loaded = False
self.loading = False
self.error = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def load_model(self, progress: gr.Progress = None) -> Tuple[Optional[AutoModelForCausalLM], Optional[AutoTokenizer]]:
"""Lazy load the model with progress feedback"""
if self.loaded:
return self.model, self.tokenizer
if self.loading:
while self.loading:
time.sleep(0.1)
return self.model, self.tokenizer
self.loading = True
try:
if progress:
progress(0.1, desc="Checking GPU availability...")
torch.cuda.empty_cache()
if progress:
progress(0.2, desc="Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True
)
if progress:
progress(0.5, desc="Loading model (this may take a few minutes)...")
model_kwargs = {
"trust_remote_code": True,
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
"device_map": "auto" if self.device == "cuda" else None,
"low_cpu_mem_usage": True,
"offload_folder": "offload"
}
try:
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
**model_kwargs
)
except torch.cuda.OutOfMemoryError:
model_kwargs["device_map"] = None
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
**model_kwargs
).to('cpu')
self.device = 'cpu'
test_input = tokenizer("Test", return_tensors="pt").to(self.device)
_ = model.generate(**test_input, max_new_tokens=1)
self.model = model.eval()
self.tokenizer = tokenizer
self.loaded = True
return model, tokenizer
except Exception as e:
self.error = f"Model loading failed: {str(e)}"
logging.error(self.error)
return None, None
finally:
self.loading = False
# Initialize model loader
model_loader = ModelLoader()
@lru_cache(maxsize=1)
def get_model_and_tokenizer():
return model_loader.load_model()
# ========== UTILITY FUNCTIONS ==========
def generate_session_token() -> str:
alphabet = string.ascii_letters + string.digits
return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH))
def sanitize_input(text: str) -> str:
if not text:
return ""
text = html.escape(text.strip())
text = re.sub(r'<[^>]*>', '', text)
text = re.sub(r'[^\w\s\-.,!?@#\$%^&*()+=]', '', text)
return text
def validate_name(name: str) -> str:
name = name.strip()
if not name:
raise ValueError("Name cannot be empty.")
if len(name) > 100:
raise ValueError("Name is too long (maximum 100 characters).")
if any(c.isdigit() for c in name):
raise ValueError("Name cannot contain numbers.")
return name
def validate_age(age: Union[int, float, str]) -> int:
try:
age_int = int(age)
if not MIN_AGE <= age_int <= MAX_AGE:
raise ValueError(f"Age must be between {MIN_AGE} and {MAX_AGE}.")
return age_int
except (ValueError, TypeError):
raise ValueError("Please enter a valid age number.")
def validate_file(file_obj) -> None:
if not file_obj:
raise ValueError("Please upload a file first")
file_ext = os.path.splitext(file_obj.name)[1].lower()
if file_ext not in ALLOWED_FILE_TYPES:
raise ValueError(f"Invalid file type. Allowed types: {', '.join(ALLOWED_FILE_TYPES)}")
file_size = os.path.getsize(file_obj.name) / (1024 * 1024)
if file_size > MAX_FILE_SIZE_MB:
raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")
# ========== TEXT EXTRACTION FUNCTIONS ==========
def preprocess_text(text: str) -> str:
"""Normalize text for more reliable parsing"""
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
text = text.replace('|', ' ') # Handle common OCR errors
text = text.upper() # Standardize case for certain fields
return text
def extract_text_from_file(file_path: str, file_ext: str) -> str:
text = ""
try:
if file_ext == '.pdf':
try:
# First try pdfplumber for better table extraction
import pdfplumber
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
# Try tables first
tables = page.extract_tables()
if tables:
for table in tables:
text += "\n".join(
" | ".join(str(cell) for cell in row if cell is not None)
for row in table
) + "\n"
# Fall back to text extraction
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
if not text.strip():
raise ValueError("PDFPlumber returned empty text")
except Exception as e:
logging.warning(f"PDFPlumber failed: {str(e)}. Trying PyMuPDF...")
doc = fitz.open(file_path)
for page in doc:
text += page.get_text("text") + '\n'
if not text.strip():
logging.warning("PyMuPDF returned empty text, trying OCR fallback...")
text = extract_text_from_pdf_with_ocr(file_path)
elif file_ext in ['.png', '.jpg', '.jpeg']:
text = extract_text_with_ocr(file_path)
text = clean_extracted_text(text)
if not text.strip():
raise ValueError("No text could be extracted.")
return text
except Exception as e:
logging.error(f"Text extraction error: {str(e)}")
raise gr.Error(f"Failed to extract text: {str(e)}\n\nPossible solutions:\n1. Try a different file format\n2. Ensure text is clear and not handwritten\n3. Check file size (<5MB)")
def extract_text_from_pdf_with_ocr(file_path: str) -> str:
try:
import pdf2image
images = pdf2image.convert_from_path(file_path, dpi=300)
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;()-/ '
text = ""
for i, img in enumerate(images):
# Pre-process image
img = img.convert('L') # Grayscale
img = img.point(lambda x: 0 if x < 140 else 255) # Increase contrast
# OCR with retry logic
try:
page_text = pytesseract.image_to_string(img, config=custom_config)
if len(page_text.strip()) > 20: # Minimum viable text
text += f"PAGE {i+1}:\n{page_text}\n\n"
except Exception as e:
logging.warning(f"OCR failed on page {i+1}: {str(e)}")
return text if text else "No readable text found"
except Exception as e:
raise ValueError(f"OCR processing failed: {str(e)}")
def extract_text_with_ocr(file_path: str) -> str:
try:
image = Image.open(file_path)
image = image.convert('L')
image = image.point(lambda x: 0 if x < 128 else 255, '1')
custom_config = r'--oem 3 --psm 6'
text = pytesseract.image_to_string(image, config=custom_config)
return text
except Exception as e:
raise ValueError(f"OCR processing failed: {str(e)}")
def clean_extracted_text(text: str) -> str:
text = re.sub(r'\s+', ' ', text).strip()
replacements = {
'|': 'I',
'‘': "'",
'’': "'",
'“': '"',
'”': '"',
'fi': 'fi',
'fl': 'fl'
}
for wrong, right in replacements.items():
text = text.replace(wrong, right)
return text
def remove_sensitive_info(text: str) -> str:
text = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[REDACTED]', text)
text = re.sub(r'\b\d{6,9}\b', '[ID]', text)
text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]', text)
return text
# ========== TRANSCRIPT PARSING ==========
class Course(BaseModel):
requirement: str
school_year: str
grade_level: str
course_code: str
description: str
term: str
district_number: str
fg: str
included: str
credits: str
class GraduationProgress(BaseModel):
student_name: str
student_id: str
current_grade: str
year_of_graduation: str
unweighted_gpa: float
weighted_gpa: float
community_service_hours: int
community_service_date: str
total_credits_earned: float
virtual_grade: str
requirements: Dict[str, Dict[str, float]]
courses: List[Course]
assessments: Dict[str, str]
class TranscriptParser:
def __init__(self):
self.student_data = {}
self.requirements = {}
self.current_courses = []
self.course_history = []
self.graduation_status = {}
def parse_transcript(self, text: str) -> Dict:
"""Parse transcript text and return structured data"""
try:
text = preprocess_text(text)
# First try the new detailed parser
parsed_data = self._parse_detailed_transcript(text)
if parsed_data:
return parsed_data
# Fall back to simplified parser if detailed parsing fails
return self._parse_simplified_transcript(text)
except Exception as e:
logging.error(f"Error parsing transcript: {str(e)}")
raise ValueError(f"Couldn't parse transcript content. Error: {str(e)}")
def _parse_detailed_transcript(self, text: str) -> Optional[Dict]:
"""Parse detailed transcript format with improved patterns"""
try:
parsed_data = {
'student_info': {},
'requirements': {},
'course_history': [],
'assessments': {}
}
# Extract student info with more flexible patterns
student_info_match = re.search(r"(\d{7}) - (.*?)\n", text)
if student_info_match:
parsed_data['student_info']['id'] = student_info_match.group(1)
parsed_data['student_info']['name'] = student_info_match.group(2).strip()
# More flexible grade and year extraction
current_grade_match = re.search(r"Current Grade:\s*(\d+)", text, re.IGNORECASE)
if current_grade_match:
parsed_data['student_info']['grade'] = current_grade_match.group(1)
yog_match = re.search(r"YOG\s*(\d{4})", text, re.IGNORECASE)
if yog_match:
parsed_data['student_info']['year_of_graduation'] = yog_match.group(1)
# Improved GPA extraction with more flexible patterns
gpa_matches = re.findall(r"(?:UNWEIGHTED|WEIGHTED)\s*GPA\s*([\d.]+)", text, re.IGNORECASE)
if len(gpa_matches) >= 1:
parsed_data['student_info']['unweighted_gpa'] = float(gpa_matches[0])
if len(gpa_matches) >= 2:
parsed_data['student_info']['weighted_gpa'] = float(gpa_matches[1])
# Community service info
service_hours_match = re.search(r"COMM\s*SERV\s*HOURS\s*(\d+)", text, re.IGNORECASE)
if service_hours_match:
parsed_data['student_info']['community_service_hours'] = int(service_hours_match.group(1))
service_date_match = re.search(r"COMM\s*SERV\s*DATE\s*(\d{2}/\d{2}/\d{4})", text, re.IGNORECASE)
if service_date_match:
parsed_data['student_info']['community_service_date'] = service_date_match.group(1)
# Credits info
credits_match = re.search(r"TOTAL\s*CREDITS\s*EARNED\s*([\d.]+)", text, re.IGNORECASE)
if credits_match:
parsed_data['student_info']['total_credits'] = float(credits_match.group(1))
# Virtual grade
virtual_grade_match = re.search(r"VIRTUAL\s*GRADE\s*(\w+)", text, re.IGNORECASE)
if virtual_grade_match:
parsed_data['student_info']['virtual_grade'] = virtual_grade_match.group(1)
# Extract requirements with improved pattern
req_pattern = re.compile(r"([A-Z]-[^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([\d.]+)\s*\|\s*([\d.]+)\s*\|\s*([\d.]+)\s*\|\s*([\d]+)\s*%")
for match in req_pattern.finditer(text):
code = match.group(1).strip()
desc = match.group(2).strip()
required = float(match.group(3)) if match.group(3) else 0.0
waived = float(match.group(4)) if match.group(4) else 0.0
completed = float(match.group(5)) if match.group(5) else 0.0
percent = float(match.group(6)) if match.group(6) else 0.0
parsed_data['requirements'][code] = {
"description": desc,
"required": required,
"waived": waived,
"completed": completed,
"percent_complete": percent
}
# Extract assessments with more flexible pattern
assess_pattern = re.compile(r"Z-ASSESSMENT:\s*(.*?)\s*\|\s*(.*?)\s*\|\s*(\w+)\s*\|\s*(\d+)\s*%", re.IGNORECASE)
for match in assess_pattern.finditer(text):
name = f"Assessment: {match.group(1).strip()}"
status = match.group(3).strip()
parsed_data['assessments'][name] = status
# Handle other Z items
for z_item in ["Community Service Hours", "GPA"]:
z_match = re.search(fr"Z-{z_item.replace(' ', '.*?')}\s*\|\s*(.*?)\s*\|\s*(\w+)\s*\|\s*(\d+)\s*%", text, re.IGNORECASE)
if z_match:
status = z_match.group(2).strip()
parsed_data['assessments'][z_item] = status
# Extract course history with more robust pattern
course_history_section = re.search(r"REQUIREMENT.*?SCHOOL YEAR.*?GRADELV1.*?CRSNUM.*?DESCRIPTION.*?TERM.*?DSTNUMBER.*?FG.*?INCL.*?CREDITS(.*?)(?:\n\s*\n|$)", text, re.DOTALL | re.IGNORECASE)
if course_history_section:
course_lines = [line.strip() for line in course_history_section.group(1).split('\n') if line.strip()]
for line in course_lines:
parts = [part.strip() for part in line.split('|')]
if len(parts) >= 9:
course = {
'requirement': parts[0] if len(parts) > 0 else "",
'school_year': parts[1] if len(parts) > 1 else "",
'grade_level': parts[2] if len(parts) > 2 else "",
'course_code': parts[3] if len(parts) > 3 else "",
'description': parts[4] if len(parts) > 4 else "",
'term': parts[5] if len(parts) > 5 else "",
'district_number': parts[6] if len(parts) > 6 else "",
'fg': parts[7] if len(parts) > 7 else "",
'included': parts[8] if len(parts) > 8 else "",
'credits': parts[9] if len(parts) > 9 else "0"
}
parsed_data['course_history'].append(course)
return parsed_data
except Exception as e:
logging.warning(f"Detailed transcript parsing failed: {str(e)}")
return None
def _parse_simplified_transcript(self, text: str) -> Dict:
"""Fallback simplified transcript parser with multiple pattern attempts"""
patterns = [
(r'(?:COURSE|SUBJECT)\s*CODE.*?GRADE.*?CREDITS(.*?)(?:\n\s*\n|\Z)', 'table'),
(r'([A-Z]{2,4}\s?\d{3}[A-Z]?)\s+(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 'line'),
(r'(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 'minimal')
]
for pattern, pattern_type in patterns:
try:
if pattern_type == 'table':
# Parse tabular data
table_section = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
if table_section:
courses = re.findall(r'([A-Z]{2,4}\s?\d{3}[A-Z]?)\s+(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)',
table_section.group(1))
elif pattern_type == 'line':
courses = re.findall(pattern, text)
else:
courses = re.findall(pattern, text)
if courses:
parsed_data = {'course_history': []}
for course in courses:
if len(course) >= 4:
parsed_data['course_history'].append({
'course_code': course[0].strip(),
'description': course[1].strip(),
'grade': course[2].strip(),
'credits': float(course[3]) if course[3] else 0.0
})
elif len(course) == 3:
parsed_data['course_history'].append({
'description': course[0].strip(),
'grade': course[1].strip(),
'credits': float(course[2]) if course[2] else 0.0
})
return parsed_data
except Exception as e:
logging.warning(f"Pattern {pattern} failed: {str(e)}")
continue
raise ValueError("Could not identify course information in transcript")
# ========== ENHANCED ANALYSIS FUNCTIONS ==========
def analyze_gpa(parsed_data: Dict) -> str:
try:
gpa = float(parsed_data['student_info'].get('weighted_gpa', 0))
if gpa >= 4.5:
return "🌟 Excellent GPA! You're in the top tier of students."
elif gpa >= 3.5:
return "👍 Good GPA! You're performing above average."
elif gpa >= 2.5:
return "ℹ️ Average GPA. Consider focusing on improvement in weaker areas."
else:
return "⚠️ Below average GPA. Please consult with your academic advisor."
except (TypeError, ValueError, KeyError, AttributeError):
return "❌ Could not analyze GPA."
def analyze_graduation_status(parsed_data: Dict) -> str:
try:
total_required = sum(
float(req.get('required', 0))
for req in parsed_data.get('requirements', {}).values()
if req and str(req.get('required', '0')).replace('.', '').isdigit()
)
total_completed = sum(
float(req.get('completed', 0))
for req in parsed_data.get('requirements', {}).values()
if req and str(req.get('completed', '0')).replace('.', '').isdigit()
)
completion_percentage = (total_completed / total_required) * 100 if total_required > 0 else 0
if completion_percentage >= 100:
return "🎉 You've met all graduation requirements!"
elif completion_percentage >= 80:
return f"✅ You've completed {completion_percentage:.1f}% of requirements. Almost there!"
elif completion_percentage >= 50:
return f"🔄 You've completed {completion_percentage:.1f}% of requirements. Keep working!"
else:
return f"⚠️ You've only completed {completion_percentage:.1f}% of requirements. Please meet with your counselor."
except (ZeroDivisionError, TypeError, KeyError, AttributeError):
return "❌ Could not analyze graduation status."
def generate_advice(parsed_data: Dict) -> str:
advice = []
# GPA advice
try:
gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0))
if gpa < 3.0:
advice.append("📚 Your GPA could improve. Consider:\n- Seeking tutoring for challenging subjects\n- Meeting with teachers during office hours\n- Developing better study habits")
except (TypeError, ValueError, KeyError, AttributeError):
pass
# Community service advice
try:
service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0))
if service_hours < 100:
advice.append("🤝 Consider more community service:\n- Many colleges value 100+ hours\n- Look for opportunities that align with your interests")
except (TypeError, ValueError, KeyError, AttributeError):
pass
# Missing requirements advice
try:
missing_reqs = [
req for code, req in parsed_data.get('requirements', {}).items()
if req and float(req.get('percent_complete', 0)) < 100 and not code.startswith("Z-Assessment")
]
if missing_reqs:
req_list = "\n- ".join([f"{code}: {req.get('description', '')}" for code, req in missing_reqs])
advice.append(f"🎓 Focus on completing these requirements:\n- {req_list}")
except (TypeError, ValueError, KeyError, AttributeError):
pass
# Course rigor advice
try:
ap_count = sum(1 for course in parsed_data.get('course_history', [])
if course and "ADVANCED PLACEMENT" in course.get('description', '').upper())
if ap_count < 3:
advice.append("🧠 Consider taking more challenging courses:\n- AP/IB courses can strengthen college applications\n- Shows academic rigor to admissions officers")
except (TypeError, KeyError, AttributeError):
pass
return "\n\n".join(advice) if advice else "🎯 You're on track! Keep up the good work."
def generate_college_recommendations(parsed_data: Dict) -> str:
try:
gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0))
ap_count = sum(1 for course in parsed_data.get('course_history', [])
if course and "ADVANCED PLACEMENT" in course.get('description', '').upper())
service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0))
recommendations = []
if gpa >= 4.0 and ap_count >= 5:
recommendations.append("🏛️ Reach Schools: Ivy League, Stanford, MIT, etc.")
if gpa >= 3.7:
recommendations.append("🎓 Competitive Schools: Top public universities, selective private colleges")
if gpa >= 3.0:
recommendations.append("📚 Good Match Schools: State flagship universities, many private colleges")
if gpa >= 2.0:
recommendations.append("🏫 Safety Schools: Community colleges, open admission universities")
# Add scholarship opportunities
if gpa >= 3.5:
recommendations.append("\n💰 Scholarship Opportunities:\n- Bright Futures (Florida)\n- National Merit Scholarship\n- College-specific merit scholarships")
elif gpa >= 3.0:
recommendations.append("\n💰 Scholarship Opportunities:\n- Local community scholarships\n- Special interest scholarships\n- First-generation student programs")
# Add extracurricular advice
if service_hours < 50:
recommendations.append("\n🎭 Extracurricular Advice:\n- Colleges value depth over breadth in activities\n- Consider leadership roles in 1-2 organizations")
if not recommendations:
return "❌ Not enough data to generate college recommendations"
return "Based on your academic profile:\n\n" + "\n\n".join(recommendations)
except:
return "❌ Could not generate college recommendations"
def create_gpa_visualization(parsed_data: Dict):
try:
gpa_data = {
"Type": ["Weighted GPA", "Unweighted GPA"],
"Value": [
float(parsed_data.get('student_info', {}).get('weighted_gpa', 0)),
float(parsed_data.get('student_info', {}).get('unweighted_gpa', 0))
]
}
df = pd.DataFrame(gpa_data)
fig = px.bar(df, x="Type", y="Value", title="GPA Comparison",
color="Type", text="Value",
color_discrete_sequence=["#4C78A8", "#F58518"])
fig.update_traces(texttemplate='%{text:.2f}', textposition='outside')
fig.update_layout(yaxis_range=[0,5], uniformtext_minsize=8, uniformtext_mode='hide')
return fig
except:
return None
def create_requirements_visualization(parsed_data: Dict):
try:
req_data = []
for code, req in parsed_data.get('requirements', {}).items():
if req and req.get('percent_complete'):
completion = float(req['percent_complete'])
req_data.append({
"Requirement": code,
"Completion (%)": completion,
"Status": "Complete" if completion >= 100 else "Incomplete"
})
if not req_data:
return None
df = pd.DataFrame(req_data)
fig = px.bar(df, x="Requirement", y="Completion (%)",
title="Graduation Requirements Completion",
color="Status",
color_discrete_map={"Complete": "#2CA02C", "Incomplete": "#D62728"},
hover_data=["Requirement"])
fig.update_layout(xaxis={'categoryorder':'total descending'})
return fig
except:
return None
def parse_transcript(file_obj, progress=gr.Progress()) -> Tuple[str, Optional[Dict]]:
"""Process transcript file and return analysis results"""
try:
if not file_obj:
raise gr.Error("Please upload a transcript file first (PDF or image)")
validate_file(file_obj)
file_ext = os.path.splitext(file_obj.name)[1].lower()
# Additional PDF validation
if file_ext == '.pdf':
try:
with open(file_obj.name, 'rb') as f:
PdfReader(f) # Test if PDF is readable
except Exception as e:
raise gr.Error(f"Invalid PDF file: {str(e)}. Please upload a non-corrupted PDF.")
if progress:
progress(0.2, desc="Extracting text from file...")
try:
text = extract_text_from_file(file_obj.name, file_ext)
except Exception as e:
raise ValueError(f"Failed to extract text: {str(e)}. The file may be corrupted or in an unsupported format.")
if not text.strip():
raise ValueError("The file appears to be empty or contains no readable text.")
if progress:
progress(0.5, desc="Parsing transcript...")
parser = TranscriptParser()
try:
parsed_data = parser.parse_transcript(text)
if not parsed_data:
raise ValueError("No data could be parsed from the transcript.")
except Exception as e:
raise ValueError(f"Couldn't parse transcript content. Error: {str(e)}")
# Perform enhanced analyses
gpa_analysis = analyze_gpa(parsed_data)
grad_status = analyze_graduation_status(parsed_data)
advice = generate_advice(parsed_data)
college_recs = generate_college_recommendations(parsed_data)
gpa_viz = create_gpa_visualization(parsed_data)
req_viz = create_requirements_visualization(parsed_data)
# Format results for display
results = [
f"📊 GPA Analysis: {gpa_analysis}",
f"🎓 Graduation Status: {grad_status}",
f"💡 Recommendations:\n{advice}",
f"🏫 College Recommendations:\n{college_recs}"
]
# Store all analysis results in the parsed_data
parsed_data['analysis'] = {
'gpa_analysis': gpa_analysis,
'grad_status': grad_status,
'advice': advice,
'college_recs': college_recs,
'visualizations': {
'gpa_viz': gpa_viz,
'req_viz': req_viz
}
}
return "\n\n".join(results), parsed_data
except Exception as e:
error_msg = f"Error processing transcript: {str(e)}"
logging.error(error_msg)
raise gr.Error(f"{error_msg}\n\nPossible solutions:\n1. Try a different file format\n2. Ensure text is clear and not handwritten\n3. Check file size (<5MB)")
# ========== LEARNING STYLE QUIZ ==========
class LearningStyleQuiz:
def __init__(self):
self.questions = [
"When you study for a test, you prefer to:",
"When you need directions to a new place, you prefer:",
"When you learn a new skill, you prefer to:",
"When you're trying to concentrate, you:",
"When you meet new people, you remember them by:",
"When you're assembling furniture or a gadget, you:",
"When choosing a restaurant, you rely most on:",
"When you're in a waiting room, you typically:",
"When giving someone instructions, you tend to:",
"When you're trying to recall information, you:",
"When you're at a museum or exhibit, you:",
"When you're learning a new language, you prefer:",
"When you're taking notes in class, you:",
"When you're explaining something complex, you:",
"When you're at a party, you enjoy:",
"When you're trying to remember a phone number, you:",
"When you're relaxing, you prefer to:",
"When you're learning to use new software, you:",
"When you're giving a presentation, you rely on:",
"When you're solving a difficult problem, you:"
]
self.options = [
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]
self.learning_styles = {
"Visual": {
"description": "Visual learners prefer using images, diagrams, and spatial understanding.",
"tips": [
"Use color coding in your notes",
"Create mind maps and diagrams",
"Watch educational videos",
"Use flashcards with images",
"Highlight important information in different colors"
],
"careers": [
"Graphic Designer", "Architect", "Photographer",
"Engineer", "Surgeon", "Pilot"
]
},
"Auditory": {
"description": "Auditory learners learn best through listening and speaking.",
"tips": [
"Record lectures and listen to them",
"Participate in study groups",
"Explain concepts out loud to yourself",
"Use rhymes or songs to remember information",
"Listen to educational podcasts"
],
"careers": [
"Musician", "Journalist", "Lawyer",
"Psychologist", "Teacher", "Customer Service"
]
},
"Reading/Writing": {
"description": "These learners prefer information displayed as words.",
"tips": [
"Write detailed notes",
"Create summaries in your own words",
"Read textbooks and articles",
"Make lists to organize information",
"Rewrite your notes to reinforce learning"
],
"careers": [
"Writer", "Researcher", "Editor",
"Accountant", "Programmer", "Historian"
]
},
"Kinesthetic": {
"description": "Kinesthetic learners learn through movement and hands-on activities.",
"tips": [
"Use hands-on activities",
"Take frequent movement breaks",
"Create physical models",
"Associate information with physical actions",
"Study while walking or pacing"
],
"careers": [
"Athlete", "Chef", "Mechanic",
"Dancer", "Physical Therapist", "Carpenter"
]
}
}
def evaluate_quiz(self, *answers) -> str:
"""Evaluate quiz answers and return learning style results"""
answers = list(answers)
if len(answers) != len(self.questions):
raise gr.Error("Please answer all questions before submitting")
scores = {style: 0 for style in self.learning_styles}
for i, answer in enumerate(answers):
if not answer:
continue
for j, style in enumerate(self.learning_styles):
if answer == self.options[i][j]:
scores[style] += 1
break
total_answered = sum(1 for ans in answers if ans)
if total_answered == 0:
raise gr.Error("No answers provided")
percentages = {style: (score/total_answered)*100 for style, score in scores.items()}
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
result = "## Your Learning Style Results\n\n"
result += "### Scores:\n"
for style, score in sorted_styles:
result += f"- **{style}**: {score}/{total_answered} ({percentages[style]:.1f}%)\n"
max_score = max(scores.values())
primary_styles = [style for style, score in scores.items() if score == max_score]
result += "\n### Analysis:\n"
if len(primary_styles) == 1:
primary_style = primary_styles[0]
style_info = self.learning_styles[primary_style]
result += f"Your primary learning style is **{primary_style}**\n\n"
result += f"**{primary_style} Characteristics**:\n"
result += f"{style_info['description']}\n\n"
result += "**Recommended Study Strategies**:\n"
for tip in style_info['tips']:
result += f"- {tip}\n"
result += "\n**Potential Career Paths**:\n"
for career in style_info['careers'][:6]:
result += f"- {career}\n"
complementary = [s for s in sorted_styles if s[0] != primary_style][0][0]
result += f"\nYou might also benefit from some **{complementary}** strategies:\n"
for tip in self.learning_styles[complementary]['tips'][:3]:
result += f"- {tip}\n"
else:
result += "You have multiple strong learning styles:\n"
for style in primary_styles:
result += f"- **{style}**\n"
result += "\n**Combined Learning Strategies**:\n"
result += "You may benefit from combining different learning approaches:\n"
for style in primary_styles:
result += f"\n**{style}** techniques:\n"
for tip in self.learning_styles[style]['tips'][:2]:
result += f"- {tip}\n"
result += f"\n**{style}** career suggestions:\n"
for career in self.learning_styles[style]['careers'][:3]:
result += f"- {career}\n"
return result
learning_style_quiz = LearningStyleQuiz()
# ========== PROFILE MANAGEMENT ==========
class ProfileManager:
def __init__(self):
self.profiles_dir = Path(PROFILES_DIR)
self.profiles_dir.mkdir(exist_ok=True, parents=True)
self.current_session = None
def set_session(self, session_token: str) -> None:
self.current_session = session_token
def get_profile_path(self, name: str) -> Path:
if self.current_session:
name_hash = hashlib.sha256(name.encode()).hexdigest()[:16]
return self.profiles_dir / f"{name_hash}_{self.current_session}_profile.json"
return self.profiles_dir / f"{name.replace(' ', '_')}_profile.json"
def save_profile(self, name: str, age: Union[int, str], interests: str,
transcript: Dict, learning_style: str,
movie: str, movie_reason: str, show: str, show_reason: str,
book: str, book_reason: str, character: str, character_reason: str,
blog: str) -> str:
try:
name = validate_name(name)
age = validate_age(age)
if not interests.strip():
raise ValueError("Please describe at least one interest or hobby.")
if not transcript:
raise ValueError("Please complete the transcript analysis first.")
if not learning_style or "Your primary learning style is:" not in learning_style:
raise ValueError("Please complete the learning style quiz first.")
favorites = {
"movie": sanitize_input(movie),
"movie_reason": sanitize_input(movie_reason),
"show": sanitize_input(show),
"show_reason": sanitize_input(show_reason),
"book": sanitize_input(book),
"book_reason": sanitize_input(book_reason),
"character": sanitize_input(character),
"character_reason": sanitize_input(character_reason)
}
data = {
"name": name,
"age": age,
"interests": sanitize_input(interests),
"transcript": transcript,
"learning_style": learning_style,
"favorites": favorites,
"blog": sanitize_input(blog) if blog else "",
"session_token": self.current_session,
"last_updated": time.time()
}
filepath = self.get_profile_path(name)
with open(filepath, "w", encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
if HF_TOKEN and 'hf_api' in globals():
try:
hf_api.upload_file(
path_or_fileobj=filepath,
path_in_repo=f"profiles/{filepath.name}",
repo_id="your-username/student-learning-assistant",
repo_type="dataset"
)
except Exception as e:
logging.error(f"Failed to upload to HF Hub: {str(e)}")
# Return simple confirmation with GPA if available
confirmation = f"Profile saved successfully for {name}."
if 'gpa' in data.get('transcript', {}).get('student_info', {}):
confirmation += f"\nGPA: {data['transcript']['student_info']['gpa']}"
return confirmation
except Exception as e:
logging.error(f"Profile validation error: {str(e)}")
raise gr.Error(f"Couldn't save profile: {str(e)}")
def load_profile(self, name: str = None, session_token: str = None) -> Dict:
try:
if session_token:
profile_pattern = f"*{session_token}_profile.json"
else:
profile_pattern = "*.json"
profiles = list(self.profiles_dir.glob(profile_pattern))
if not profiles:
return {}
if name:
name_hash = hashlib.sha256(name.encode()).hexdigest()[:16]
if session_token:
profile_file = self.profiles_dir / f"{name_hash}_{session_token}_profile.json"
else:
profile_file = self.profiles_dir / f"{name_hash}_profile.json"
if not profile_file.exists():
if HF_TOKEN and 'hf_api' in globals():
try:
hf_api.download_file(
path_in_repo=f"profiles/{profile_file.name}",
repo_id="your-username/student-learning-assistant",
repo_type="dataset",
local_dir=self.profiles_dir
)
except:
raise gr.Error(f"No profile found for {name}")
else:
raise gr.Error(f"No profile found for {name}")
else:
profile_file = profiles[0]
with open(profile_file, "r", encoding='utf-8') as f:
profile_data = json.load(f)
if time.time() - profile_data.get('last_updated', 0) > SESSION_TIMEOUT:
raise gr.Error("Session expired. Please start a new session.")
return profile_data
except Exception as e:
logging.error(f"Error loading profile: {str(e)}")
return {}
def list_profiles(self, session_token: str = None) -> List[str]:
if session_token:
profiles = list(self.profiles_dir.glob(f"*{session_token}_profile.json"))
else:
profiles = list(self.profiles_dir.glob("*.json"))
profile_names = []
for p in profiles:
with open(p, "r", encoding='utf-8') as f:
try:
data = json.load(f)
profile_names.append(data.get('name', p.stem))
except json.JSONDecodeError:
continue
return profile_names
profile_manager = ProfileManager()
# ========== AI TEACHING ASSISTANT ==========
class TeachingAssistant:
def __init__(self):
self.context_history = []
self.max_context_length = 5
async def generate_response(self, message: str, history: List[List[Union[str, None]]], session_token: str) -> str:
try:
profile = profile_manager.load_profile(session_token=session_token)
if not profile:
return "Please complete and save your profile first."
self._update_context(message, history)
# Focus on GPA if mentioned
if "gpa" in message.lower():
gpa = profile.get("transcript", {}).get("student_info", {}).get("gpa", "unknown")
return f"Your GPA is {gpa}. Would you like advice on improving it?"
# Generic response otherwise
return "I'm your learning assistant. Ask me about your GPA, courses, or study tips."
except Exception as e:
logging.error(f"Error generating response: {str(e)}")
return "I encountered an error. Please try again."
def _update_context(self, message: str, history: List[List[Union[str, None]]]) -> None:
self.context_history.append({"role": "user", "content": message})
if history:
for h in history[-self.max_context_length:]:
if h[0]:
self.context_history.append({"role": "user", "content": h[0]})
if h[1]:
self.context_history.append({"role": "assistant", "content": h[1]})
self.context_history = self.context_history[-(self.max_context_length*2):]
teaching_assistant = TeachingAssistant()
# ========== GRADIO INTERFACE ==========
def create_interface():
with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app:
session_token = gr.State(value=generate_session_token())
profile_manager.set_session(session_token.value)
tab_completed = gr.State({
0: False, # Transcript Upload
1: False, # Learning Style Quiz
2: False, # Personal Questions
3: False, # Save & Review
4: False # AI Assistant
})
# Custom CSS
app.css = """
.gradio-container { max-width: 1200px !important; margin: 0 auto !important; }
.tab-content { padding: 20px !important; border: 1px solid #e0e0e0 !important; border-radius: 8px !important; margin-top: 10px !important; }
.completed-tab { background: #4CAF50 !important; color: white !important; }
.incomplete-tab { background: #E0E0E0 !important; }
.nav-message { padding: 10px; margin: 10px 0; border-radius: 4px; background-color: #ffebee; color: #c62828; }
.file-upload { border: 2px dashed #4CAF50 !important; padding: 20px !important; border-radius: 8px !important; text-align: center; }
.file-upload:hover { background: #f5f5f5; }
.progress-bar { height: 5px; background: linear-gradient(to right, #4CAF50, #8BC34A); margin-bottom: 15px; border-radius: 3px; }
.quiz-question { margin-bottom: 15px; padding: 15px; background: #f5f5f5; border-radius: 5px; }
.quiz-results { margin-top: 20px; padding: 20px; background: #e8f5e9; border-radius: 8px; }
.error-message { color: #d32f2f; background-color: #ffebee; padding: 10px; border-radius: 4px; margin: 10px 0; }
.transcript-results { border-left: 4px solid #4CAF50 !important; padding: 15px !important; background: #f8f8f8 !important; }
.error-box { border: 1px solid #ff4444 !important; background: #fff8f8 !important; }
.dark .tab-content { background-color: #2d2d2d !important; border-color: #444 !important; }
.dark .quiz-question { background-color: #3d3d3d !important; }
.dark .quiz-results { background-color: #2e3d2e !important; }
.dark textarea, .dark input { background-color: #333 !important; color: #eee !important; }
.dark .output-markdown { color: #eee !important; }
.dark .chatbot { background-color: #333 !important; }
.dark .chatbot .user, .dark .chatbot .assistant { color: #eee !important; }
"""
# Header
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
# Student Learning Assistant
**Your personalized education companion**
Complete each step to get customized learning recommendations.
""")
with gr.Column(scale=1):
dark_mode = gr.Checkbox(label="Dark Mode", value=False)
# Navigation buttons
with gr.Row():
with gr.Column(scale=1, min_width=100):
step1 = gr.Button("1. Transcript", elem_classes="incomplete-tab")
with gr.Column(scale=1, min_width=100):
step2 = gr.Button("2. Quiz", elem_classes="incomplete-tab", interactive=False)
with gr.Column(scale=1, min_width=100):
step3 = gr.Button("3. Profile", elem_classes="incomplete-tab", interactive=False)
with gr.Column(scale=1, min_width=100):
step4 = gr.Button("4. Review", elem_classes="incomplete-tab", interactive=False)
with gr.Column(scale=1, min_width=100):
step5 = gr.Button("5. Assistant", elem_classes="incomplete-tab", interactive=False)
nav_message = gr.HTML(visible=False)
# Main tabs
with gr.Tabs(visible=True) as tabs:
# ===== TAB 1: TRANSCRIPT UPLOAD =====
with gr.Tab("Transcript", id=0):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Upload Your Transcript")
with gr.Group(elem_classes="file-upload"):
file_input = gr.File(
label="Drag and drop your transcript here (PDF or Image)",
file_types=ALLOWED_FILE_TYPES,
type="filepath"
)
upload_btn = gr.Button("Analyze Transcript", variant="primary")
file_error = gr.HTML(visible=False)
with gr.Column(scale=2):
transcript_output = gr.Textbox(
label="Analysis Results",
lines=10,
interactive=False,
elem_classes="transcript-results"
)
with gr.Row():
gpa_viz = gr.Plot(label="GPA Visualization", visible=False)
req_viz = gr.Plot(label="Requirements Visualization", visible=False)
transcript_data = gr.State()
file_input.change(
fn=lambda f: (
gr.update(visible=False),
gr.update(value="File ready for analysis!", visible=True) if f
else gr.update(value="Please upload a file", visible=False)
),
inputs=file_input,
outputs=[file_error, transcript_output]
)
def process_and_visualize(file_obj, tab_status):
results, data = parse_transcript(file_obj)
# Update visualizations
gpa_viz_update = gr.update(visible=data.get('analysis', {}).get('visualizations', {}).get('gpa_viz') is not None)
req_viz_update = gr.update(visible=data.get('analysis', {}).get('visualizations', {}).get('req_viz') is not None)
# Update tab completion status
tab_status[0] = True
return results, data, gpa_viz_update, req_viz_update, tab_status
upload_btn.click(
fn=process_and_visualize,
inputs=[file_input, tab_completed],
outputs=[transcript_output, transcript_data, gpa_viz, req_viz, tab_completed]
).then(
fn=lambda: gr.update(elem_classes="completed-tab"),
outputs=step1
).then(
fn=lambda: gr.update(interactive=True),
outputs=step2
)
# ===== TAB 2: LEARNING STYLE QUIZ =====
with gr.Tab("Learning Style Quiz", id=1):
with gr.Column():
gr.Markdown("### Step 2: Discover Your Learning Style")
progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>")
quiz_components = []
with gr.Accordion("Quiz Questions", open=True):
for i, (question, options) in enumerate(zip(learning_style_quiz.questions, learning_style_quiz.options)):
with gr.Group(elem_classes="quiz-question"):
q = gr.Radio(
options,
label=f"{i+1}. {question}",
show_label=True
)
quiz_components.append(q)
with gr.Row():
quiz_submit = gr.Button("Submit Quiz", variant="primary")
quiz_clear = gr.Button("Clear Answers")
quiz_alert = gr.HTML(visible=False)
learning_output = gr.Markdown(
label="Your Learning Style Results",
visible=False,
elem_classes="quiz-results"
)
for component in quiz_components:
component.change(
fn=lambda *answers: {
progress: gr.HTML(
f"<div class='progress-bar' style='width: {sum(1 for a in answers if a)/len(answers)*100}%'></div>"
)
},
inputs=quiz_components,
outputs=progress
)
quiz_submit.click(
fn=lambda *answers: learning_style_quiz.evaluate_quiz(*answers),
inputs=quiz_components,
outputs=learning_output
).then(
fn=lambda: gr.update(visible=True),
outputs=learning_output
).then(
fn=lambda: {1: True},
inputs=None,
outputs=tab_completed
).then(
fn=lambda: gr.update(elem_classes="completed-tab"),
outputs=step2
).then(
fn=lambda: gr.update(interactive=True),
outputs=step3
)
quiz_clear.click(
fn=lambda: [None] * len(quiz_components),
outputs=quiz_components
).then(
fn=lambda: gr.HTML("<div class='progress-bar' style='width: 0%'></div>"),
outputs=progress
)
# ===== TAB 3: PERSONAL QUESTIONS =====
with gr.Tab("Personal Profile", id=2):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 3: Tell Us About Yourself")
with gr.Group():
name = gr.Textbox(label="Full Name", placeholder="Your name")
age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0)
interests = gr.Textbox(
label="Your Interests/Hobbies",
placeholder="e.g., Science, Music, Sports, Art..."
)
save_personal_btn = gr.Button("Save Information", variant="primary")
save_confirmation = gr.HTML(visible=False)
with gr.Column(scale=1):
gr.Markdown("### Favorites")
with gr.Group():
movie = gr.Textbox(label="Favorite Movie")
movie_reason = gr.Textbox(label="Why do you like it?", lines=2)
show = gr.Textbox(label="Favorite TV Show")
show_reason = gr.Textbox(label="Why do you like it?", lines=2)
book = gr.Textbox(label="Favorite Book")
book_reason = gr.Textbox(label="Why do you like it?", lines=2)
character = gr.Textbox(label="Favorite Character (from any story)")
character_reason = gr.Textbox(label="Why do you like them?", lines=2)
with gr.Accordion("Personal Blog (Optional)", open=False):
blog = gr.Textbox(
label="Share your thoughts",
placeholder="Write something about yourself...",
lines=5
)
save_personal_btn.click(
fn=lambda n, a, i, ts: (
{2: True},
gr.update(elem_classes="completed-tab"),
gr.update(interactive=True),
gr.update(value="<div class='alert-box'>Information saved!</div>", visible=True)
),
inputs=[name, age, interests, tab_completed],
outputs=[tab_completed, step3, step4, save_confirmation]
)
# ===== TAB 4: SAVE & REVIEW =====
with gr.Tab("Save Profile", id=3):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 4: Review & Save Your Profile")
with gr.Group():
load_profile_dropdown = gr.Dropdown(
label="Load Existing Profile",
choices=profile_manager.list_profiles(session_token.value),
visible=False
)
with gr.Row():
load_btn = gr.Button("Load", visible=False)
delete_btn = gr.Button("Delete", variant="stop", visible=False)
save_btn = gr.Button("Save Profile", variant="primary")
clear_btn = gr.Button("Clear Form")
with gr.Column(scale=2):
output_summary = gr.Markdown(
"Your profile summary will appear here after saving.",
label="Profile Summary"
)
save_btn.click(
fn=profile_manager.save_profile,
inputs=[
name, age, interests, transcript_data, learning_output,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog
],
outputs=output_summary
).then(
fn=lambda: {3: True},
inputs=None,
outputs=tab_completed
).then(
fn=lambda: gr.update(elem_classes="completed-tab"),
outputs=step4
).then(
fn=lambda: gr.update(interactive=True),
outputs=step5
).then(
fn=lambda: profile_manager.list_profiles(session_token.value),
outputs=load_profile_dropdown
).then(
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
outputs=load_btn
).then(
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
outputs=delete_btn
)
# ===== TAB 5: AI ASSISTANT =====
with gr.Tab("AI Assistant", id=4):
gr.Markdown("## Your Personalized Learning Assistant")
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
async def chat_wrapper(message: str, history: List[List[str]]):
response = await teaching_assistant.generate_response(
message,
history,
session_token.value
)
return response
chatbot = gr.ChatInterface(
fn=chat_wrapper,
examples=[
"What's my GPA?",
"How should I study for math?",
"What courses am I taking?",
"Study tips for my learning style"
],
title=""
)
# Navigation logic
def navigate_to_tab(tab_index: int, tab_completed_status):
current_tab = tabs.selected
if tab_index <= current_tab:
return gr.Tabs(selected=tab_index), gr.update(visible=False)
# Check all previous tabs are completed
for i in range(tab_index):
if not tab_completed_status.get(i, False):
messages = [
"Please complete the transcript analysis first",
"Please complete the learning style quiz first",
"Please fill out your personal information first",
"Please save your profile first"
]
return (
gr.Tabs(selected=i),
gr.update(
value=f"<div class='error-message'>⛔ {messages[i]}</div>",
visible=True
)
)
return gr.Tabs(selected=tab_index), gr.update(visible=False)
step1.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(0), tab_completed],
outputs=[tabs, nav_message]
)
step2.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(1), tab_completed],
outputs=[tabs, nav_message]
)
step3.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(2), tab_completed],
outputs=[tabs, nav_message]
)
step4.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(3), tab_completed],
outputs=[tabs, nav_message]
)
step5.click(
lambda idx, status: navigate_to_tab(idx, status),
inputs=[gr.State(4), tab_completed],
outputs=[tabs, nav_message]
)
# Dark mode toggle
def toggle_dark_mode(dark):
return gr.themes.Soft(primary_hue="blue", secondary_hue="gray") if not dark else gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate")
dark_mode.change(
fn=toggle_dark_mode,
inputs=dark_mode,
outputs=None
)
# Load model on startup
app.load(fn=lambda: model_loader.load_model(), outputs=[])
return app
app = create_interface()
if __name__ == "__main__":
app.launch()
|