File size: 68,529 Bytes
b57ed91
3e64737
 
 
 
2c68bd8
3e64737
ce1eb3c
 
 
efc52d4
cd3e466
 
 
 
 
 
e881a6a
 
 
0459869
 
9dc6d98
 
 
5c437e2
018fcd1
66cb301
ce1eb3c
 
9b7ad24
ce1eb3c
 
 
cd3e466
 
9dc6d98
cd3e466
0459869
b198b5a
55e2010
e21d148
 
b198b5a
0459869
b02a8be
 
db322cc
cd3e466
 
b198b5a
 
 
 
 
ce1eb3c
efc52d4
db322cc
 
 
 
 
 
 
5b7059f
db322cc
5b7059f
db322cc
33513a8
 
 
 
 
 
 
 
 
db322cc
b198b5a
55e2010
db322cc
55e2010
0459869
b198b5a
55e2010
 
 
5b7059f
db322cc
 
 
b198b5a
55e2010
 
 
 
 
 
 
b02a8be
55e2010
db322cc
55e2010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0459869
55e2010
 
db322cc
 
55e2010
 
db322cc
55e2010
5b7059f
db322cc
33513a8
 
e881a6a
db322cc
 
e881a6a
b02a8be
 
 
 
ce1eb3c
cd3e466
 
 
 
ce1eb3c
5a3b92c
 
d62b229
 
 
 
ce1eb3c
e581856
 
 
b02a8be
e581856
41f6b04
e581856
41f6b04
e581856
 
ce1eb3c
 
 
 
41f6b04
ce1eb3c
 
41f6b04
ce1eb3c
 
 
ce9371b
ce1eb3c
e581856
 
41f6b04
ce1eb3c
b02a8be
ce1eb3c
41f6b04
66cb301
e881a6a
33513a8
 
 
 
 
 
 
fcf1816
 
 
 
 
 
a0e5ea9
 
 
 
e96bacb
 
 
 
dc1d757
 
 
 
e96bacb
 
 
 
a0e5ea9
 
 
 
fcf1816
 
 
 
f8e1794
a0e5ea9
fcf1816
 
 
 
 
 
 
b02a8be
fcf1816
 
 
 
0459869
f8e1794
fcf1816
 
 
f8e1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcf1816
f8e1794
fcf1816
cd3e466
 
 
b02a8be
 
fcf1816
 
cd3e466
 
b02a8be
fcf1816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929de97
fcf1816
 
e881a6a
5c437e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f17f847
 
 
 
 
 
0d7fd90
f17f847
 
5c437e2
 
33513a8
 
5c437e2
 
 
 
 
 
 
 
 
 
e96bacb
5c437e2
 
e96bacb
41f6b04
b02a8be
 
5c437e2
 
 
b02a8be
ce9371b
e96bacb
5c437e2
 
 
 
 
e96bacb
 
5c437e2
 
 
e96bacb
5c437e2
 
 
33513a8
 
 
e96bacb
33513a8
e96bacb
55e2010
e96bacb
33513a8
5c437e2
 
55e2010
33513a8
5c437e2
 
55e2010
e96bacb
33513a8
5c437e2
 
 
e96bacb
33513a8
5c437e2
 
 
e96bacb
 
5c437e2
 
 
33513a8
 
 
 
5c437e2
 
 
 
 
 
 
 
e96bacb
33513a8
5c437e2
e96bacb
 
5c437e2
 
e96bacb
5c437e2
e96bacb
 
 
5c437e2
 
e96bacb
33513a8
e96bacb
 
 
 
 
 
33513a8
 
 
 
 
 
 
 
 
e96bacb
 
 
55e2010
b02a8be
55e2010
b02a8be
e96bacb
5c437e2
 
 
f8e1794
 
33513a8
f8e1794
 
 
5c437e2
f8e1794
 
 
 
33513a8
 
 
 
f8e1794
 
 
 
 
 
 
 
33513a8
 
 
 
 
 
 
 
 
 
 
 
 
f8e1794
33513a8
 
f8e1794
5c437e2
f8e1794
9dc6d98
018fcd1
 
 
33513a8
018fcd1
 
 
 
 
 
 
 
 
 
 
 
 
 
33513a8
 
 
018fcd1
 
 
33513a8
 
 
018fcd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33513a8
018fcd1
 
 
 
 
 
 
33513a8
018fcd1
 
 
 
 
 
 
 
33513a8
 
018fcd1
 
 
33513a8
018fcd1
 
 
 
 
 
33513a8
 
018fcd1
 
 
 
 
 
 
 
 
33513a8
 
 
 
018fcd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33513a8
 
018fcd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33513a8
 
018fcd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db322cc
018fcd1
ce1eb3c
e581856
f8e1794
e581856
ce1eb3c
cd3e466
 
f8e1794
 
 
 
 
 
 
 
0d7fd90
 
 
a0e5ea9
 
 
 
ce1eb3c
0d7fd90
a0e5ea9
0d7fd90
 
b02a8be
55e2010
 
a0e5ea9
 
33513a8
 
a0e5ea9
 
6f8fb84
018fcd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b02a8be
018fcd1
fcf1816
ce1eb3c
55e2010
ed548e3
f8e1794
0e95f56
6f8fb84
ce1eb3c
 
 
97d65ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce1eb3c
 
 
97d65ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce1eb3c
 
 
97d65ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce1eb3c
0e95f56
97d65ae
b02a8be
 
ce1eb3c
ed548e3
ce1eb3c
97d65ae
ce1eb3c
97d65ae
 
b02a8be
97d65ae
 
 
 
 
ce1eb3c
97d65ae
 
 
ce1eb3c
97d65ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce1eb3c
 
0e95f56
6f8fb84
ce1eb3c
 
 
97d65ae
 
 
 
 
 
 
 
9dc6d98
 
97d65ae
0e95f56
97d65ae
 
 
 
48e62d8
ce1eb3c
b02a8be
 
41f6b04
 
 
 
 
 
 
 
 
ce1eb3c
97d65ae
 
 
 
 
 
 
 
 
 
ce1eb3c
97d65ae
ce1eb3c
b02a8be
41f6b04
b02a8be
 
97d65ae
 
9dc6d98
 
ce1eb3c
 
97d65ae
ce1eb3c
97d65ae
 
ce1eb3c
f640af2
97d65ae
 
 
 
 
 
 
 
0459869
ce1eb3c
b02a8be
 
 
 
 
97d65ae
ce1eb3c
41f6b04
 
b02a8be
97d65ae
a703d91
97d65ae
 
 
 
a703d91
97d65ae
 
 
a703d91
97d65ae
9dc6d98
97d65ae
9dc6d98
97d65ae
9dc6d98
97d65ae
 
f640af2
97d65ae
 
 
 
 
 
 
 
 
 
 
 
 
a703d91
97d65ae
9dc6d98
 
 
 
97d65ae
a703d91
0459869
97d65ae
3e64737
97d65ae
 
 
 
 
 
 
 
9dc6d98
 
 
 
 
 
97d65ae
 
48e62d8
 
 
 
 
 
 
b02a8be
48e62d8
 
 
 
 
b02a8be
48e62d8
 
 
b02a8be
 
 
 
48e62d8
b02a8be
 
97d65ae
48e62d8
 
b02a8be
48e62d8
 
 
 
 
b02a8be
48e62d8
b02a8be
48e62d8
 
 
 
 
0e95f56
 
ce1eb3c
97d65ae
 
 
 
 
 
 
 
 
 
 
 
b02a8be
97d65ae
efc52d4
 
 
 
 
f8e1794
 
efc52d4
 
ed548e3
 
f8e1794
 
9dc6d98
 
 
 
 
 
 
 
97d65ae
 
b02a8be
9dc6d98
 
 
 
 
 
 
 
 
 
efc52d4
97d65ae
efc52d4
 
 
 
 
 
 
 
 
 
 
 
 
b02a8be
efc52d4
 
 
ce1eb3c
 
97d65ae
efc52d4
 
 
97d65ae
 
 
efc52d4
ed548e3
97d65ae
 
 
efc52d4
018fcd1
f8e1794
 
97d65ae
018fcd1
 
 
97d65ae
efc52d4
f8e1794
 
 
 
 
 
 
 
 
 
018fcd1
 
 
 
 
 
 
 
 
 
 
 
97d65ae
018fcd1
efc52d4
018fcd1
b02a8be
 
 
 
 
 
97d65ae
efc52d4
 
 
ed548e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d65ae
ed548e3
97d65ae
ed548e3
 
 
 
 
 
efc52d4
97d65ae
 
 
 
 
 
 
 
 
 
 
 
b02a8be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d65ae
ed548e3
 
 
 
 
 
 
 
efc52d4
 
 
ce1eb3c
 
97d65ae
 
 
 
 
 
 
 
 
 
 
efc52d4
 
97d65ae
 
 
 
 
 
 
 
 
 
48e62d8
 
 
 
b02a8be
48e62d8
 
97d65ae
 
b02a8be
 
 
 
 
 
48e62d8
b02a8be
97d65ae
efc52d4
 
 
a703d91
97d65ae
 
 
 
 
 
efc52d4
97d65ae
 
efc52d4
 
97d65ae
efc52d4
97d65ae
a703d91
97d65ae
 
 
 
a703d91
efc52d4
97d65ae
b02a8be
97d65ae
 
 
b02a8be
97d65ae
b02a8be
97d65ae
b02a8be
 
 
97d65ae
b02a8be
 
97d65ae
b02a8be
 
97d65ae
efc52d4
97d65ae
 
 
 
 
 
 
 
efc52d4
 
 
97d65ae
 
 
3af8029
 
 
 
 
 
 
 
97d65ae
3af8029
97d65ae
b02a8be
 
 
 
97d65ae
 
 
efc52d4
 
97d65ae
 
 
0459869
 
 
f8e1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f6b04
0459869
 
a703d91
97d65ae
efc52d4
97d65ae
0459869
0e95f56
97d65ae
efc52d4
97d65ae
0459869
0e95f56
97d65ae
efc52d4
97d65ae
0459869
0e95f56
97d65ae
efc52d4
97d65ae
0459869
ce1eb3c
97d65ae
efc52d4
97d65ae
0459869
a703d91
e881a6a
9dc6d98
 
 
 
 
 
 
 
 
 
efc52d4
 
97d65ae
 
ce1eb3c
 
6e6aad7
ce1eb3c
 
0d7fd90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import html
from pathlib import Path
import fitz  # PyMuPDF
import pytesseract
from PIL import Image
import io
import secrets
import string
from huggingface_hub import HfApi, HfFolder
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import logging
import asyncio
from functools import lru_cache
import hashlib
from concurrent.futures import ThreadPoolExecutor
from pydantic import BaseModel
import plotly.express as px

# ========== CONFIGURATION ==========
PROFILES_DIR = "student_profiles"
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"]
MAX_FILE_SIZE_MB = 5
MIN_AGE = 5
MAX_AGE = 120
SESSION_TOKEN_LENGTH = 32
HF_TOKEN = os.getenv("HF_TOKEN")
SESSION_TIMEOUT = 3600  # 1 hour session timeout

# Initialize logging
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    filename='transcript_parser.log'
)

# Model configuration - Using smaller model
MODEL_NAME = "deepseek-ai/deepseek-llm-1.3b"

# Initialize Hugging Face API
if HF_TOKEN:
    try:
        hf_api = HfApi(token=HF_TOKEN)
        HfFolder.save_token(HF_TOKEN)
    except Exception as e:
        logging.error(f"Failed to initialize Hugging Face API: {str(e)}")

# ========== MODEL LOADER ==========
class ModelLoader:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.loaded = False
        self.loading = False
        self.error = None
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
    
    def load_model(self, progress: gr.Progress = None) -> Tuple[Optional[AutoModelForCausalLM], Optional[AutoTokenizer]]:
        """Lazy load the model with progress feedback"""
        if self.loaded:
            return self.model, self.tokenizer
            
        if self.loading:
            while self.loading:
                time.sleep(0.1)
            return self.model, self.tokenizer
            
        self.loading = True
        try:
            if progress:
                progress(0.1, desc="Checking GPU availability...")
            
            torch.cuda.empty_cache()
            
            if progress:
                progress(0.2, desc="Loading tokenizer...")
                
            tokenizer = AutoTokenizer.from_pretrained(
                MODEL_NAME,
                trust_remote_code=True
            )
            
            if progress:
                progress(0.5, desc="Loading model (this may take a few minutes)...")
                
            model_kwargs = {
                "trust_remote_code": True,
                "torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
                "device_map": "auto" if self.device == "cuda" else None,
                "low_cpu_mem_usage": True,
                "offload_folder": "offload"
            }
            
            try:
                model = AutoModelForCausalLM.from_pretrained(
                    MODEL_NAME,
                    **model_kwargs
                )
            except torch.cuda.OutOfMemoryError:
                model_kwargs["device_map"] = None
                model = AutoModelForCausalLM.from_pretrained(
                    MODEL_NAME,
                    **model_kwargs
                ).to('cpu')
                self.device = 'cpu'
                
            test_input = tokenizer("Test", return_tensors="pt").to(self.device)
            _ = model.generate(**test_input, max_new_tokens=1)
            
            self.model = model.eval()
            self.tokenizer = tokenizer
            self.loaded = True
            
            return model, tokenizer
            
        except Exception as e:
            self.error = f"Model loading failed: {str(e)}"
            logging.error(self.error)
            return None, None
        finally:
            self.loading = False

# Initialize model loader
model_loader = ModelLoader()

@lru_cache(maxsize=1)
def get_model_and_tokenizer():
    return model_loader.load_model()

# ========== UTILITY FUNCTIONS ==========
def generate_session_token() -> str:
    alphabet = string.ascii_letters + string.digits
    return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH))

def sanitize_input(text: str) -> str:
    if not text:
        return ""
    text = html.escape(text.strip())
    text = re.sub(r'<[^>]*>', '', text)
    text = re.sub(r'[^\w\s\-.,!?@#\$%^&*()+=]', '', text)
    return text

def validate_name(name: str) -> str:
    name = name.strip()
    if not name:
        raise ValueError("Name cannot be empty.")
    if len(name) > 100:
        raise ValueError("Name is too long (maximum 100 characters).")
    if any(c.isdigit() for c in name):
        raise ValueError("Name cannot contain numbers.")
    return name

def validate_age(age: Union[int, float, str]) -> int:
    try:
        age_int = int(age)
        if not MIN_AGE <= age_int <= MAX_AGE:
            raise ValueError(f"Age must be between {MIN_AGE} and {MAX_AGE}.")
        return age_int
    except (ValueError, TypeError):
        raise ValueError("Please enter a valid age number.")

def validate_file(file_obj) -> None:
    if not file_obj:
        raise ValueError("Please upload a file first")
    
    file_ext = os.path.splitext(file_obj.name)[1].lower()
    if file_ext not in ALLOWED_FILE_TYPES:
        raise ValueError(f"Invalid file type. Allowed types: {', '.join(ALLOWED_FILE_TYPES)}")
    
    file_size = os.path.getsize(file_obj.name) / (1024 * 1024)
    if file_size > MAX_FILE_SIZE_MB:
        raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")

# ========== TEXT EXTRACTION FUNCTIONS ==========
def preprocess_text(text: str) -> str:
    """Normalize text for more reliable parsing"""
    text = re.sub(r'\s+', ' ', text)  # Normalize whitespace
    text = text.replace('|', ' ')      # Handle common OCR errors
    text = text.upper()                # Standardize case for certain fields
    return text

def extract_text_from_file(file_path: str, file_ext: str) -> str:
    text = ""
    
    try:
        if file_ext == '.pdf':
            try:
                # First try pdfplumber for better table extraction
                import pdfplumber
                with pdfplumber.open(file_path) as pdf:
                    for page in pdf.pages:
                        # Try tables first
                        tables = page.extract_tables()
                        if tables:
                            for table in tables:
                                text += "\n".join(
                                    " | ".join(str(cell) for cell in row if cell is not None)
                                    for row in table
                                ) + "\n"
                        # Fall back to text extraction
                        page_text = page.extract_text()
                        if page_text:
                            text += page_text + "\n"
                if not text.strip():
                    raise ValueError("PDFPlumber returned empty text")
            except Exception as e:
                logging.warning(f"PDFPlumber failed: {str(e)}. Trying PyMuPDF...")
                doc = fitz.open(file_path)
                for page in doc:
                    text += page.get_text("text") + '\n'
                if not text.strip():
                    logging.warning("PyMuPDF returned empty text, trying OCR fallback...")
                    text = extract_text_from_pdf_with_ocr(file_path)
        
        elif file_ext in ['.png', '.jpg', '.jpeg']:
            text = extract_text_with_ocr(file_path)
            
        text = clean_extracted_text(text)
        
        if not text.strip():
            raise ValueError("No text could be extracted.")
            
        return text
    
    except Exception as e:
        logging.error(f"Text extraction error: {str(e)}")
        raise gr.Error(f"Failed to extract text: {str(e)}\n\nPossible solutions:\n1. Try a different file format\n2. Ensure text is clear and not handwritten\n3. Check file size (<5MB)")

def extract_text_from_pdf_with_ocr(file_path: str) -> str:
    try:
        import pdf2image
        images = pdf2image.convert_from_path(file_path, dpi=300)
        custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;()-/ '
        
        text = ""
        for i, img in enumerate(images):
            # Pre-process image
            img = img.convert('L')  # Grayscale
            img = img.point(lambda x: 0 if x < 140 else 255)  # Increase contrast
            
            # OCR with retry logic
            try:
                page_text = pytesseract.image_to_string(img, config=custom_config)
                if len(page_text.strip()) > 20:  # Minimum viable text
                    text += f"PAGE {i+1}:\n{page_text}\n\n"
            except Exception as e:
                logging.warning(f"OCR failed on page {i+1}: {str(e)}")
                
        return text if text else "No readable text found"
    except Exception as e:
        raise ValueError(f"OCR processing failed: {str(e)}")

def extract_text_with_ocr(file_path: str) -> str:
    try:
        image = Image.open(file_path)
        image = image.convert('L')
        image = image.point(lambda x: 0 if x < 128 else 255, '1')
        custom_config = r'--oem 3 --psm 6'
        text = pytesseract.image_to_string(image, config=custom_config)
        return text
    except Exception as e:
        raise ValueError(f"OCR processing failed: {str(e)}")

def clean_extracted_text(text: str) -> str:
    text = re.sub(r'\s+', ' ', text).strip()
    replacements = {
        '|': 'I',
        '‘': "'",
        '’': "'",
        '“': '"',
        '”': '"',
        'fi': 'fi',
        'fl': 'fl'
    }
    for wrong, right in replacements.items():
        text = text.replace(wrong, right)
    return text

def remove_sensitive_info(text: str) -> str:
    text = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[REDACTED]', text)
    text = re.sub(r'\b\d{6,9}\b', '[ID]', text)
    text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]', text)
    return text

# ========== TRANSCRIPT PARSING ==========
class Course(BaseModel):
    requirement: str
    school_year: str
    grade_level: str
    course_code: str
    description: str
    term: str
    district_number: str
    fg: str
    included: str
    credits: str

class GraduationProgress(BaseModel):
    student_name: str
    student_id: str
    current_grade: str
    year_of_graduation: str
    unweighted_gpa: float
    weighted_gpa: float
    community_service_hours: int
    community_service_date: str
    total_credits_earned: float
    virtual_grade: str
    requirements: Dict[str, Dict[str, float]]
    courses: List[Course]
    assessments: Dict[str, str]

class TranscriptParser:
    def __init__(self):
        self.student_data = {}
        self.requirements = {}
        self.current_courses = []
        self.course_history = []
        self.graduation_status = {}
        
    def parse_transcript(self, text: str) -> Dict:
        """Parse transcript text and return structured data"""
        try:
            text = preprocess_text(text)
            
            # First try the new detailed parser
            parsed_data = self._parse_detailed_transcript(text)
            if parsed_data:
                return parsed_data
            
            # Fall back to simplified parser if detailed parsing fails
            return self._parse_simplified_transcript(text)
            
        except Exception as e:
            logging.error(f"Error parsing transcript: {str(e)}")
            raise ValueError(f"Couldn't parse transcript content. Error: {str(e)}")

    def _parse_detailed_transcript(self, text: str) -> Optional[Dict]:
        """Parse detailed transcript format with improved patterns"""
        try:
            parsed_data = {
                'student_info': {},
                'requirements': {},
                'course_history': [],
                'assessments': {}
            }
            
            # Extract student info with more flexible patterns
            student_info_match = re.search(r"(\d{7}) - (.*?)\n", text)
            if student_info_match:
                parsed_data['student_info']['id'] = student_info_match.group(1)
                parsed_data['student_info']['name'] = student_info_match.group(2).strip()
            
            # More flexible grade and year extraction
            current_grade_match = re.search(r"Current Grade:\s*(\d+)", text, re.IGNORECASE)
            if current_grade_match:
                parsed_data['student_info']['grade'] = current_grade_match.group(1)
            
            yog_match = re.search(r"YOG\s*(\d{4})", text, re.IGNORECASE)
            if yog_match:
                parsed_data['student_info']['year_of_graduation'] = yog_match.group(1)
            
            # Improved GPA extraction with more flexible patterns
            gpa_matches = re.findall(r"(?:UNWEIGHTED|WEIGHTED)\s*GPA\s*([\d.]+)", text, re.IGNORECASE)
            if len(gpa_matches) >= 1:
                parsed_data['student_info']['unweighted_gpa'] = float(gpa_matches[0])
            if len(gpa_matches) >= 2:
                parsed_data['student_info']['weighted_gpa'] = float(gpa_matches[1])
            
            # Community service info
            service_hours_match = re.search(r"COMM\s*SERV\s*HOURS\s*(\d+)", text, re.IGNORECASE)
            if service_hours_match:
                parsed_data['student_info']['community_service_hours'] = int(service_hours_match.group(1))
            
            service_date_match = re.search(r"COMM\s*SERV\s*DATE\s*(\d{2}/\d{2}/\d{4})", text, re.IGNORECASE)
            if service_date_match:
                parsed_data['student_info']['community_service_date'] = service_date_match.group(1)
            
            # Credits info
            credits_match = re.search(r"TOTAL\s*CREDITS\s*EARNED\s*([\d.]+)", text, re.IGNORECASE)
            if credits_match:
                parsed_data['student_info']['total_credits'] = float(credits_match.group(1))
            
            # Virtual grade
            virtual_grade_match = re.search(r"VIRTUAL\s*GRADE\s*(\w+)", text, re.IGNORECASE)
            if virtual_grade_match:
                parsed_data['student_info']['virtual_grade'] = virtual_grade_match.group(1)
            
            # Extract requirements with improved pattern
            req_pattern = re.compile(r"([A-Z]-[^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([\d.]+)\s*\|\s*([\d.]+)\s*\|\s*([\d.]+)\s*\|\s*([\d]+)\s*%")
            for match in req_pattern.finditer(text):
                code = match.group(1).strip()
                desc = match.group(2).strip()
                required = float(match.group(3)) if match.group(3) else 0.0
                waived = float(match.group(4)) if match.group(4) else 0.0
                completed = float(match.group(5)) if match.group(5) else 0.0
                percent = float(match.group(6)) if match.group(6) else 0.0
                parsed_data['requirements'][code] = {
                    "description": desc,
                    "required": required,
                    "waived": waived,
                    "completed": completed,
                    "percent_complete": percent
                }
            
            # Extract assessments with more flexible pattern
            assess_pattern = re.compile(r"Z-ASSESSMENT:\s*(.*?)\s*\|\s*(.*?)\s*\|\s*(\w+)\s*\|\s*(\d+)\s*%", re.IGNORECASE)
            for match in assess_pattern.finditer(text):
                name = f"Assessment: {match.group(1).strip()}"
                status = match.group(3).strip()
                parsed_data['assessments'][name] = status
            
            # Handle other Z items
            for z_item in ["Community Service Hours", "GPA"]:
                z_match = re.search(fr"Z-{z_item.replace(' ', '.*?')}\s*\|\s*(.*?)\s*\|\s*(\w+)\s*\|\s*(\d+)\s*%", text, re.IGNORECASE)
                if z_match:
                    status = z_match.group(2).strip()
                    parsed_data['assessments'][z_item] = status
            
            # Extract course history with more robust pattern
            course_history_section = re.search(r"REQUIREMENT.*?SCHOOL YEAR.*?GRADELV1.*?CRSNUM.*?DESCRIPTION.*?TERM.*?DSTNUMBER.*?FG.*?INCL.*?CREDITS(.*?)(?:\n\s*\n|$)", text, re.DOTALL | re.IGNORECASE)
            if course_history_section:
                course_lines = [line.strip() for line in course_history_section.group(1).split('\n') if line.strip()]
                for line in course_lines:
                    parts = [part.strip() for part in line.split('|')]
                    if len(parts) >= 9:
                        course = {
                            'requirement': parts[0] if len(parts) > 0 else "",
                            'school_year': parts[1] if len(parts) > 1 else "",
                            'grade_level': parts[2] if len(parts) > 2 else "",
                            'course_code': parts[3] if len(parts) > 3 else "",
                            'description': parts[4] if len(parts) > 4 else "",
                            'term': parts[5] if len(parts) > 5 else "",
                            'district_number': parts[6] if len(parts) > 6 else "",
                            'fg': parts[7] if len(parts) > 7 else "",
                            'included': parts[8] if len(parts) > 8 else "",
                            'credits': parts[9] if len(parts) > 9 else "0"
                        }
                        parsed_data['course_history'].append(course)
            
            return parsed_data
            
        except Exception as e:
            logging.warning(f"Detailed transcript parsing failed: {str(e)}")
            return None

    def _parse_simplified_transcript(self, text: str) -> Dict:
        """Fallback simplified transcript parser with multiple pattern attempts"""
        patterns = [
            (r'(?:COURSE|SUBJECT)\s*CODE.*?GRADE.*?CREDITS(.*?)(?:\n\s*\n|\Z)', 'table'),
            (r'([A-Z]{2,4}\s?\d{3}[A-Z]?)\s+(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 'line'),
            (r'(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 'minimal')
        ]
        
        for pattern, pattern_type in patterns:
            try:
                if pattern_type == 'table':
                    # Parse tabular data
                    table_section = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
                    if table_section:
                        courses = re.findall(r'([A-Z]{2,4}\s?\d{3}[A-Z]?)\s+(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 
                                           table_section.group(1))
                elif pattern_type == 'line':
                    courses = re.findall(pattern, text)
                else:
                    courses = re.findall(pattern, text)
                    
                if courses:
                    parsed_data = {'course_history': []}
                    for course in courses:
                        if len(course) >= 4:
                            parsed_data['course_history'].append({
                                'course_code': course[0].strip(),
                                'description': course[1].strip(),
                                'grade': course[2].strip(),
                                'credits': float(course[3]) if course[3] else 0.0
                            })
                        elif len(course) == 3:
                            parsed_data['course_history'].append({
                                'description': course[0].strip(),
                                'grade': course[1].strip(),
                                'credits': float(course[2]) if course[2] else 0.0
                            })
                    return parsed_data
            except Exception as e:
                logging.warning(f"Pattern {pattern} failed: {str(e)}")
                continue
        
        raise ValueError("Could not identify course information in transcript")

# ========== ENHANCED ANALYSIS FUNCTIONS ==========
def analyze_gpa(parsed_data: Dict) -> str:
    try:
        gpa = float(parsed_data['student_info'].get('weighted_gpa', 0))
        if gpa >= 4.5:
            return "🌟 Excellent GPA! You're in the top tier of students."
        elif gpa >= 3.5:
            return "👍 Good GPA! You're performing above average."
        elif gpa >= 2.5:
            return "ℹ️ Average GPA. Consider focusing on improvement in weaker areas."
        else:
            return "⚠️ Below average GPA. Please consult with your academic advisor."
    except (TypeError, ValueError, KeyError, AttributeError):
        return "❌ Could not analyze GPA."

def analyze_graduation_status(parsed_data: Dict) -> str:
    try:
        total_required = sum(
            float(req.get('required', 0))
            for req in parsed_data.get('requirements', {}).values() 
            if req and str(req.get('required', '0')).replace('.', '').isdigit()
        )
        
        total_completed = sum(
            float(req.get('completed', 0))
            for req in parsed_data.get('requirements', {}).values() 
            if req and str(req.get('completed', '0')).replace('.', '').isdigit()
        )
        
        completion_percentage = (total_completed / total_required) * 100 if total_required > 0 else 0
        
        if completion_percentage >= 100:
            return "🎉 You've met all graduation requirements!"
        elif completion_percentage >= 80:
            return f"✅ You've completed {completion_percentage:.1f}% of requirements. Almost there!"
        elif completion_percentage >= 50:
            return f"🔄 You've completed {completion_percentage:.1f}% of requirements. Keep working!"
        else:
            return f"⚠️ You've only completed {completion_percentage:.1f}% of requirements. Please meet with your counselor."
    except (ZeroDivisionError, TypeError, KeyError, AttributeError):
        return "❌ Could not analyze graduation status."

def generate_advice(parsed_data: Dict) -> str:
    advice = []
    
    # GPA advice
    try:
        gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0))
        if gpa < 3.0:
            advice.append("📚 Your GPA could improve. Consider:\n- Seeking tutoring for challenging subjects\n- Meeting with teachers during office hours\n- Developing better study habits")
    except (TypeError, ValueError, KeyError, AttributeError):
        pass
    
    # Community service advice
    try:
        service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0))
        if service_hours < 100:
            advice.append("🤝 Consider more community service:\n- Many colleges value 100+ hours\n- Look for opportunities that align with your interests")
    except (TypeError, ValueError, KeyError, AttributeError):
        pass
    
    # Missing requirements advice
    try:
        missing_reqs = [
            req for code, req in parsed_data.get('requirements', {}).items()
            if req and float(req.get('percent_complete', 0)) < 100 and not code.startswith("Z-Assessment")
        ]
        
        if missing_reqs:
            req_list = "\n- ".join([f"{code}: {req.get('description', '')}" for code, req in missing_reqs])
            advice.append(f"🎓 Focus on completing these requirements:\n- {req_list}")
    except (TypeError, ValueError, KeyError, AttributeError):
        pass
    
    # Course rigor advice
    try:
        ap_count = sum(1 for course in parsed_data.get('course_history', []) 
                      if course and "ADVANCED PLACEMENT" in course.get('description', '').upper())
        if ap_count < 3:
            advice.append("🧠 Consider taking more challenging courses:\n- AP/IB courses can strengthen college applications\n- Shows academic rigor to admissions officers")
    except (TypeError, KeyError, AttributeError):
        pass
    
    return "\n\n".join(advice) if advice else "🎯 You're on track! Keep up the good work."

def generate_college_recommendations(parsed_data: Dict) -> str:
    try:
        gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0))
        ap_count = sum(1 for course in parsed_data.get('course_history', []) 
                      if course and "ADVANCED PLACEMENT" in course.get('description', '').upper())
        service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0))
        
        recommendations = []
        
        if gpa >= 4.0 and ap_count >= 5:
            recommendations.append("🏛️ Reach Schools: Ivy League, Stanford, MIT, etc.")
        if gpa >= 3.7:
            recommendations.append("🎓 Competitive Schools: Top public universities, selective private colleges")
        if gpa >= 3.0:
            recommendations.append("📚 Good Match Schools: State flagship universities, many private colleges")
        if gpa >= 2.0:
            recommendations.append("🏫 Safety Schools: Community colleges, open admission universities")
            
        # Add scholarship opportunities
        if gpa >= 3.5:
            recommendations.append("\n💰 Scholarship Opportunities:\n- Bright Futures (Florida)\n- National Merit Scholarship\n- College-specific merit scholarships")
        elif gpa >= 3.0:
            recommendations.append("\n💰 Scholarship Opportunities:\n- Local community scholarships\n- Special interest scholarships\n- First-generation student programs")
            
        # Add extracurricular advice
        if service_hours < 50:
            recommendations.append("\n🎭 Extracurricular Advice:\n- Colleges value depth over breadth in activities\n- Consider leadership roles in 1-2 organizations")
            
        if not recommendations:
            return "❌ Not enough data to generate college recommendations"
            
        return "Based on your academic profile:\n\n" + "\n\n".join(recommendations)
    except:
        return "❌ Could not generate college recommendations"

def create_gpa_visualization(parsed_data: Dict):
    try:
        gpa_data = {
            "Type": ["Weighted GPA", "Unweighted GPA"],
            "Value": [
                float(parsed_data.get('student_info', {}).get('weighted_gpa', 0)),
                float(parsed_data.get('student_info', {}).get('unweighted_gpa', 0))
            ]
        }
        df = pd.DataFrame(gpa_data)
        fig = px.bar(df, x="Type", y="Value", title="GPA Comparison", 
                     color="Type", text="Value",
                     color_discrete_sequence=["#4C78A8", "#F58518"])
        fig.update_traces(texttemplate='%{text:.2f}', textposition='outside')
        fig.update_layout(yaxis_range=[0,5], uniformtext_minsize=8, uniformtext_mode='hide')
        return fig
    except:
        return None

def create_requirements_visualization(parsed_data: Dict):
    try:
        req_data = []
        for code, req in parsed_data.get('requirements', {}).items():
            if req and req.get('percent_complete'):
                completion = float(req['percent_complete'])
                req_data.append({
                    "Requirement": code,
                    "Completion (%)": completion,
                    "Status": "Complete" if completion >= 100 else "Incomplete"
                })
        
        if not req_data:
            return None
            
        df = pd.DataFrame(req_data)
        fig = px.bar(df, x="Requirement", y="Completion (%)", 
                     title="Graduation Requirements Completion",
                     color="Status",
                     color_discrete_map={"Complete": "#2CA02C", "Incomplete": "#D62728"},
                     hover_data=["Requirement"])
        fig.update_layout(xaxis={'categoryorder':'total descending'})
        return fig
    except:
        return None

def parse_transcript(file_obj, progress=gr.Progress()) -> Tuple[str, Optional[Dict]]:
    """Process transcript file and return analysis results"""
    try:
        if not file_obj:
            raise gr.Error("Please upload a transcript file first (PDF or image)")
            
        validate_file(file_obj)
        file_ext = os.path.splitext(file_obj.name)[1].lower()
        
        # Additional PDF validation
        if file_ext == '.pdf':
            try:
                with open(file_obj.name, 'rb') as f:
                    PdfReader(f)  # Test if PDF is readable
            except Exception as e:
                raise gr.Error(f"Invalid PDF file: {str(e)}. Please upload a non-corrupted PDF.")
        
        if progress:
            progress(0.2, desc="Extracting text from file...")
        
        try:
            text = extract_text_from_file(file_obj.name, file_ext)
        except Exception as e:
            raise ValueError(f"Failed to extract text: {str(e)}. The file may be corrupted or in an unsupported format.")
        
        if not text.strip():
            raise ValueError("The file appears to be empty or contains no readable text.")
        
        if progress:
            progress(0.5, desc="Parsing transcript...")
            
        parser = TranscriptParser()
        try:
            parsed_data = parser.parse_transcript(text)
            if not parsed_data:
                raise ValueError("No data could be parsed from the transcript.")
        except Exception as e:
            raise ValueError(f"Couldn't parse transcript content. Error: {str(e)}")
        
        # Perform enhanced analyses
        gpa_analysis = analyze_gpa(parsed_data)
        grad_status = analyze_graduation_status(parsed_data)
        advice = generate_advice(parsed_data)
        college_recs = generate_college_recommendations(parsed_data)
        gpa_viz = create_gpa_visualization(parsed_data)
        req_viz = create_requirements_visualization(parsed_data)
        
        # Format results for display
        results = [
            f"📊 GPA Analysis: {gpa_analysis}",
            f"🎓 Graduation Status: {grad_status}",
            f"💡 Recommendations:\n{advice}",
            f"🏫 College Recommendations:\n{college_recs}"
        ]
        
        # Store all analysis results in the parsed_data
        parsed_data['analysis'] = {
            'gpa_analysis': gpa_analysis,
            'grad_status': grad_status,
            'advice': advice,
            'college_recs': college_recs,
            'visualizations': {
                'gpa_viz': gpa_viz,
                'req_viz': req_viz
            }
        }
        
        return "\n\n".join(results), parsed_data
        
    except Exception as e:
        error_msg = f"Error processing transcript: {str(e)}"
        logging.error(error_msg)
        raise gr.Error(f"{error_msg}\n\nPossible solutions:\n1. Try a different file format\n2. Ensure text is clear and not handwritten\n3. Check file size (<5MB)")

# ========== LEARNING STYLE QUIZ ==========
class LearningStyleQuiz:
    def __init__(self):
        self.questions = [
            "When you study for a test, you prefer to:",
            "When you need directions to a new place, you prefer:",
            "When you learn a new skill, you prefer to:",
            "When you're trying to concentrate, you:",
            "When you meet new people, you remember them by:",
            "When you're assembling furniture or a gadget, you:",
            "When choosing a restaurant, you rely most on:",
            "When you're in a waiting room, you typically:",
            "When giving someone instructions, you tend to:",
            "When you're trying to recall information, you:",
            "When you're at a museum or exhibit, you:",
            "When you're learning a new language, you prefer:",
            "When you're taking notes in class, you:",
            "When you're explaining something complex, you:",
            "When you're at a party, you enjoy:",
            "When you're trying to remember a phone number, you:",
            "When you're relaxing, you prefer to:",
            "When you're learning to use new software, you:",
            "When you're giving a presentation, you rely on:",
            "When you're solving a difficult problem, you:"
        ]
        
        self.options = [
            ["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
            ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
            ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
            ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
            ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
            ["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
            ["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
            ["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
            ["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
            ["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
            ["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
            ["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
            ["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
            ["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
            ["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
            ["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
            ["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
            ["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
            ["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
            ["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
        ]
        
        self.learning_styles = {
            "Visual": {
                "description": "Visual learners prefer using images, diagrams, and spatial understanding.",
                "tips": [
                    "Use color coding in your notes",
                    "Create mind maps and diagrams",
                    "Watch educational videos",
                    "Use flashcards with images",
                    "Highlight important information in different colors"
                ],
                "careers": [
                    "Graphic Designer", "Architect", "Photographer", 
                    "Engineer", "Surgeon", "Pilot"
                ]
            },
            "Auditory": {
                "description": "Auditory learners learn best through listening and speaking.",
                "tips": [
                    "Record lectures and listen to them",
                    "Participate in study groups",
                    "Explain concepts out loud to yourself",
                    "Use rhymes or songs to remember information",
                    "Listen to educational podcasts"
                ],
                "careers": [
                    "Musician", "Journalist", "Lawyer",
                    "Psychologist", "Teacher", "Customer Service"
                ]
            },
            "Reading/Writing": {
                "description": "These learners prefer information displayed as words.",
                "tips": [
                    "Write detailed notes",
                    "Create summaries in your own words",
                    "Read textbooks and articles",
                    "Make lists to organize information",
                    "Rewrite your notes to reinforce learning"
                ],
                "careers": [
                    "Writer", "Researcher", "Editor",
                    "Accountant", "Programmer", "Historian"
                ]
            },
            "Kinesthetic": {
                "description": "Kinesthetic learners learn through movement and hands-on activities.",
                "tips": [
                    "Use hands-on activities",
                    "Take frequent movement breaks",
                    "Create physical models",
                    "Associate information with physical actions",
                    "Study while walking or pacing"
                ],
                "careers": [
                    "Athlete", "Chef", "Mechanic",
                    "Dancer", "Physical Therapist", "Carpenter"
                ]
            }
        }
    
    def evaluate_quiz(self, *answers) -> str:
        """Evaluate quiz answers and return learning style results"""
        answers = list(answers)
        if len(answers) != len(self.questions):
            raise gr.Error("Please answer all questions before submitting")
        
        scores = {style: 0 for style in self.learning_styles}
        
        for i, answer in enumerate(answers):
            if not answer:
                continue
                
            for j, style in enumerate(self.learning_styles):
                if answer == self.options[i][j]:
                    scores[style] += 1
                    break
        
        total_answered = sum(1 for ans in answers if ans)
        if total_answered == 0:
            raise gr.Error("No answers provided")
        
        percentages = {style: (score/total_answered)*100 for style, score in scores.items()}
        sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
        
        result = "## Your Learning Style Results\n\n"
        result += "### Scores:\n"
        for style, score in sorted_styles:
            result += f"- **{style}**: {score}/{total_answered} ({percentages[style]:.1f}%)\n"
        
        max_score = max(scores.values())
        primary_styles = [style for style, score in scores.items() if score == max_score]
        
        result += "\n### Analysis:\n"
        if len(primary_styles) == 1:
            primary_style = primary_styles[0]
            style_info = self.learning_styles[primary_style]
            
            result += f"Your primary learning style is **{primary_style}**\n\n"
            result += f"**{primary_style} Characteristics**:\n"
            result += f"{style_info['description']}\n\n"
            
            result += "**Recommended Study Strategies**:\n"
            for tip in style_info['tips']:
                result += f"- {tip}\n"
            
            result += "\n**Potential Career Paths**:\n"
            for career in style_info['careers'][:6]:
                result += f"- {career}\n"
            
            complementary = [s for s in sorted_styles if s[0] != primary_style][0][0]
            result += f"\nYou might also benefit from some **{complementary}** strategies:\n"
            for tip in self.learning_styles[complementary]['tips'][:3]:
                result += f"- {tip}\n"
        else:
            result += "You have multiple strong learning styles:\n"
            for style in primary_styles:
                result += f"- **{style}**\n"
            
            result += "\n**Combined Learning Strategies**:\n"
            result += "You may benefit from combining different learning approaches:\n"
            for style in primary_styles:
                result += f"\n**{style}** techniques:\n"
                for tip in self.learning_styles[style]['tips'][:2]:
                    result += f"- {tip}\n"
                
                result += f"\n**{style}** career suggestions:\n"
                for career in self.learning_styles[style]['careers'][:3]:
                    result += f"- {career}\n"
        
        return result

learning_style_quiz = LearningStyleQuiz()

# ========== PROFILE MANAGEMENT ==========
class ProfileManager:
    def __init__(self):
        self.profiles_dir = Path(PROFILES_DIR)
        self.profiles_dir.mkdir(exist_ok=True, parents=True)
        self.current_session = None
    
    def set_session(self, session_token: str) -> None:
        self.current_session = session_token
    
    def get_profile_path(self, name: str) -> Path:
        if self.current_session:
            name_hash = hashlib.sha256(name.encode()).hexdigest()[:16]
            return self.profiles_dir / f"{name_hash}_{self.current_session}_profile.json"
        return self.profiles_dir / f"{name.replace(' ', '_')}_profile.json"
    
    def save_profile(self, name: str, age: Union[int, str], interests: str, 
                    transcript: Dict, learning_style: str, 
                    movie: str, movie_reason: str, show: str, show_reason: str, 
                    book: str, book_reason: str, character: str, character_reason: str, 
                    blog: str) -> str:
        try:
            name = validate_name(name)
            age = validate_age(age)
            
            if not interests.strip():
                raise ValueError("Please describe at least one interest or hobby.")
            
            if not transcript:
                raise ValueError("Please complete the transcript analysis first.")
            
            if not learning_style or "Your primary learning style is:" not in learning_style:
                raise ValueError("Please complete the learning style quiz first.")
            
            favorites = {
                "movie": sanitize_input(movie),
                "movie_reason": sanitize_input(movie_reason),
                "show": sanitize_input(show),
                "show_reason": sanitize_input(show_reason),
                "book": sanitize_input(book),
                "book_reason": sanitize_input(book_reason),
                "character": sanitize_input(character),
                "character_reason": sanitize_input(character_reason)
            }
            
            data = {
                "name": name,
                "age": age,
                "interests": sanitize_input(interests),
                "transcript": transcript,
                "learning_style": learning_style,
                "favorites": favorites,
                "blog": sanitize_input(blog) if blog else "",
                "session_token": self.current_session,
                "last_updated": time.time()
            }
            
            filepath = self.get_profile_path(name)
            
            with open(filepath, "w", encoding='utf-8') as f:
                json.dump(data, f, indent=2, ensure_ascii=False)
            
            if HF_TOKEN and 'hf_api' in globals():
                try:
                    hf_api.upload_file(
                        path_or_fileobj=filepath,
                        path_in_repo=f"profiles/{filepath.name}",
                        repo_id="your-username/student-learning-assistant",
                        repo_type="dataset"
                    )
                except Exception as e:
                    logging.error(f"Failed to upload to HF Hub: {str(e)}")
            
            # Return simple confirmation with GPA if available
            confirmation = f"Profile saved successfully for {name}."
            if 'gpa' in data.get('transcript', {}).get('student_info', {}):
                confirmation += f"\nGPA: {data['transcript']['student_info']['gpa']}"
            return confirmation
        
        except Exception as e:
            logging.error(f"Profile validation error: {str(e)}")
            raise gr.Error(f"Couldn't save profile: {str(e)}")

    def load_profile(self, name: str = None, session_token: str = None) -> Dict:
        try:
            if session_token:
                profile_pattern = f"*{session_token}_profile.json"
            else:
                profile_pattern = "*.json"
            
            profiles = list(self.profiles_dir.glob(profile_pattern))
            if not profiles:
                return {}
            
            if name:
                name_hash = hashlib.sha256(name.encode()).hexdigest()[:16]
                if session_token:
                    profile_file = self.profiles_dir / f"{name_hash}_{session_token}_profile.json"
                else:
                    profile_file = self.profiles_dir / f"{name_hash}_profile.json"
                
                if not profile_file.exists():
                    if HF_TOKEN and 'hf_api' in globals():
                        try:
                            hf_api.download_file(
                                path_in_repo=f"profiles/{profile_file.name}",
                                repo_id="your-username/student-learning-assistant",
                                repo_type="dataset",
                                local_dir=self.profiles_dir
                            )
                        except:
                            raise gr.Error(f"No profile found for {name}")
                    else:
                        raise gr.Error(f"No profile found for {name}")
            else:
                profile_file = profiles[0]
            
            with open(profile_file, "r", encoding='utf-8') as f:
                profile_data = json.load(f)
                if time.time() - profile_data.get('last_updated', 0) > SESSION_TIMEOUT:
                    raise gr.Error("Session expired. Please start a new session.")
                return profile_data
        
        except Exception as e:
            logging.error(f"Error loading profile: {str(e)}")
            return {}
    
    def list_profiles(self, session_token: str = None) -> List[str]:
        if session_token:
            profiles = list(self.profiles_dir.glob(f"*{session_token}_profile.json"))
        else:
            profiles = list(self.profiles_dir.glob("*.json"))
        
        profile_names = []
        for p in profiles:
            with open(p, "r", encoding='utf-8') as f:
                try:
                    data = json.load(f)
                    profile_names.append(data.get('name', p.stem))
                except json.JSONDecodeError:
                    continue
        
        return profile_names

profile_manager = ProfileManager()

# ========== AI TEACHING ASSISTANT ==========
class TeachingAssistant:
    def __init__(self):
        self.context_history = []
        self.max_context_length = 5
    
    async def generate_response(self, message: str, history: List[List[Union[str, None]]], session_token: str) -> str:
        try:
            profile = profile_manager.load_profile(session_token=session_token)
            if not profile:
                return "Please complete and save your profile first."
            
            self._update_context(message, history)
            
            # Focus on GPA if mentioned
            if "gpa" in message.lower():
                gpa = profile.get("transcript", {}).get("student_info", {}).get("gpa", "unknown")
                return f"Your GPA is {gpa}. Would you like advice on improving it?"
            
            # Generic response otherwise
            return "I'm your learning assistant. Ask me about your GPA, courses, or study tips."
        
        except Exception as e:
            logging.error(f"Error generating response: {str(e)}")
            return "I encountered an error. Please try again."
    
    def _update_context(self, message: str, history: List[List[Union[str, None]]]) -> None:
        self.context_history.append({"role": "user", "content": message})
        if history:
            for h in history[-self.max_context_length:]:
                if h[0]:
                    self.context_history.append({"role": "user", "content": h[0]})
                if h[1]:
                    self.context_history.append({"role": "assistant", "content": h[1]})
        
        self.context_history = self.context_history[-(self.max_context_length*2):]

teaching_assistant = TeachingAssistant()

# ========== GRADIO INTERFACE ==========
def create_interface():
    with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app:
        session_token = gr.State(value=generate_session_token())
        profile_manager.set_session(session_token.value)
        
        tab_completed = gr.State({
            0: False,  # Transcript Upload
            1: False,  # Learning Style Quiz
            2: False,  # Personal Questions
            3: False,  # Save & Review
            4: False   # AI Assistant
        })
        
        # Custom CSS
        app.css = """
        .gradio-container { max-width: 1200px !important; margin: 0 auto !important; }
        .tab-content { padding: 20px !important; border: 1px solid #e0e0e0 !important; border-radius: 8px !important; margin-top: 10px !important; }
        .completed-tab { background: #4CAF50 !important; color: white !important; }
        .incomplete-tab { background: #E0E0E0 !important; }
        .nav-message { padding: 10px; margin: 10px 0; border-radius: 4px; background-color: #ffebee; color: #c62828; }
        .file-upload { border: 2px dashed #4CAF50 !important; padding: 20px !important; border-radius: 8px !important; text-align: center; }
        .file-upload:hover { background: #f5f5f5; }
        .progress-bar { height: 5px; background: linear-gradient(to right, #4CAF50, #8BC34A); margin-bottom: 15px; border-radius: 3px; }
        .quiz-question { margin-bottom: 15px; padding: 15px; background: #f5f5f5; border-radius: 5px; }
        .quiz-results { margin-top: 20px; padding: 20px; background: #e8f5e9; border-radius: 8px; }
        .error-message { color: #d32f2f; background-color: #ffebee; padding: 10px; border-radius: 4px; margin: 10px 0; }
        .transcript-results { border-left: 4px solid #4CAF50 !important; padding: 15px !important; background: #f8f8f8 !important; }
        .error-box { border: 1px solid #ff4444 !important; background: #fff8f8 !important; }
        
        .dark .tab-content { background-color: #2d2d2d !important; border-color: #444 !important; }
        .dark .quiz-question { background-color: #3d3d3d !important; }
        .dark .quiz-results { background-color: #2e3d2e !important; }
        .dark textarea, .dark input { background-color: #333 !important; color: #eee !important; }
        .dark .output-markdown { color: #eee !important; }
        .dark .chatbot { background-color: #333 !important; }
        .dark .chatbot .user, .dark .chatbot .assistant { color: #eee !important; }
        """
        
        # Header
        with gr.Row():
            with gr.Column(scale=4):
                gr.Markdown("""
                # Student Learning Assistant
                **Your personalized education companion**  
                Complete each step to get customized learning recommendations.
                """)
            with gr.Column(scale=1):
                dark_mode = gr.Checkbox(label="Dark Mode", value=False)
        
        # Navigation buttons
        with gr.Row():
            with gr.Column(scale=1, min_width=100):
                step1 = gr.Button("1. Transcript", elem_classes="incomplete-tab")
            with gr.Column(scale=1, min_width=100):
                step2 = gr.Button("2. Quiz", elem_classes="incomplete-tab", interactive=False)
            with gr.Column(scale=1, min_width=100):
                step3 = gr.Button("3. Profile", elem_classes="incomplete-tab", interactive=False)
            with gr.Column(scale=1, min_width=100):
                step4 = gr.Button("4. Review", elem_classes="incomplete-tab", interactive=False)
            with gr.Column(scale=1, min_width=100):
                step5 = gr.Button("5. Assistant", elem_classes="incomplete-tab", interactive=False)

        nav_message = gr.HTML(visible=False)

        # Main tabs
        with gr.Tabs(visible=True) as tabs:
            # ===== TAB 1: TRANSCRIPT UPLOAD =====
            with gr.Tab("Transcript", id=0):
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("### Step 1: Upload Your Transcript")
                        with gr.Group(elem_classes="file-upload"):
                            file_input = gr.File(
                                label="Drag and drop your transcript here (PDF or Image)",
                                file_types=ALLOWED_FILE_TYPES,
                                type="filepath"
                            )
                            upload_btn = gr.Button("Analyze Transcript", variant="primary")
                            file_error = gr.HTML(visible=False)
                    
                    with gr.Column(scale=2):
                        transcript_output = gr.Textbox(
                            label="Analysis Results", 
                            lines=10,
                            interactive=False,
                            elem_classes="transcript-results"
                        )
                        with gr.Row():
                            gpa_viz = gr.Plot(label="GPA Visualization", visible=False)
                            req_viz = gr.Plot(label="Requirements Visualization", visible=False)
                        transcript_data = gr.State()

                file_input.change(
                    fn=lambda f: (
                        gr.update(visible=False),
                        gr.update(value="File ready for analysis!", visible=True) if f 
                        else gr.update(value="Please upload a file", visible=False)
                    ),
                    inputs=file_input,
                    outputs=[file_error, transcript_output]
                )

                def process_and_visualize(file_obj, tab_status):
                    results, data = parse_transcript(file_obj)
                    
                    # Update visualizations
                    gpa_viz_update = gr.update(visible=data.get('analysis', {}).get('visualizations', {}).get('gpa_viz') is not None)
                    req_viz_update = gr.update(visible=data.get('analysis', {}).get('visualizations', {}).get('req_viz') is not None)
                    
                    # Update tab completion status
                    tab_status[0] = True
                    
                    return results, data, gpa_viz_update, req_viz_update, tab_status

                upload_btn.click(
                    fn=process_and_visualize,
                    inputs=[file_input, tab_completed],
                    outputs=[transcript_output, transcript_data, gpa_viz, req_viz, tab_completed]
                ).then(
                    fn=lambda: gr.update(elem_classes="completed-tab"),
                    outputs=step1
                ).then(
                    fn=lambda: gr.update(interactive=True),
                    outputs=step2
                )

            # ===== TAB 2: LEARNING STYLE QUIZ =====
            with gr.Tab("Learning Style Quiz", id=1):
                with gr.Column():
                    gr.Markdown("### Step 2: Discover Your Learning Style")
                    progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>")
                    
                    quiz_components = []
                    with gr.Accordion("Quiz Questions", open=True):
                        for i, (question, options) in enumerate(zip(learning_style_quiz.questions, learning_style_quiz.options)):
                            with gr.Group(elem_classes="quiz-question"):
                                q = gr.Radio(
                                    options,
                                    label=f"{i+1}. {question}",
                                    show_label=True
                                )
                                quiz_components.append(q)
                    
                    with gr.Row():
                        quiz_submit = gr.Button("Submit Quiz", variant="primary")
                        quiz_clear = gr.Button("Clear Answers")
                    
                    quiz_alert = gr.HTML(visible=False)
                    learning_output = gr.Markdown(
                        label="Your Learning Style Results",
                        visible=False,
                        elem_classes="quiz-results"
                    )

                for component in quiz_components:
                    component.change(
                        fn=lambda *answers: {
                            progress: gr.HTML(
                                f"<div class='progress-bar' style='width: {sum(1 for a in answers if a)/len(answers)*100}%'></div>"
                            )
                        },
                        inputs=quiz_components,
                        outputs=progress
                    )
                
                quiz_submit.click(
                    fn=lambda *answers: learning_style_quiz.evaluate_quiz(*answers),
                    inputs=quiz_components,
                    outputs=learning_output
                ).then(
                    fn=lambda: gr.update(visible=True),
                    outputs=learning_output
                ).then(
                    fn=lambda: {1: True},
                    inputs=None,
                    outputs=tab_completed
                ).then(
                    fn=lambda: gr.update(elem_classes="completed-tab"),
                    outputs=step2
                ).then(
                    fn=lambda: gr.update(interactive=True),
                    outputs=step3
                )
                
                quiz_clear.click(
                    fn=lambda: [None] * len(quiz_components),
                    outputs=quiz_components
                ).then(
                    fn=lambda: gr.HTML("<div class='progress-bar' style='width: 0%'></div>"),
                    outputs=progress
                )

            # ===== TAB 3: PERSONAL QUESTIONS =====
            with gr.Tab("Personal Profile", id=2):
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("### Step 3: Tell Us About Yourself")
                        with gr.Group():
                            name = gr.Textbox(label="Full Name", placeholder="Your name")
                            age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0)
                            interests = gr.Textbox(
                                label="Your Interests/Hobbies",
                                placeholder="e.g., Science, Music, Sports, Art..."
                            )
                        
                        save_personal_btn = gr.Button("Save Information", variant="primary")
                        save_confirmation = gr.HTML(visible=False)
                    
                    with gr.Column(scale=1):
                        gr.Markdown("### Favorites")
                        with gr.Group():
                            movie = gr.Textbox(label="Favorite Movie")
                            movie_reason = gr.Textbox(label="Why do you like it?", lines=2)
                            show = gr.Textbox(label="Favorite TV Show")
                            show_reason = gr.Textbox(label="Why do you like it?", lines=2)
                            book = gr.Textbox(label="Favorite Book")
                            book_reason = gr.Textbox(label="Why do you like it?", lines=2)
                            character = gr.Textbox(label="Favorite Character (from any story)")
                            character_reason = gr.Textbox(label="Why do you like them?", lines=2)
                        
                        with gr.Accordion("Personal Blog (Optional)", open=False):
                            blog = gr.Textbox(
                                label="Share your thoughts",
                                placeholder="Write something about yourself...",
                                lines=5
                            )
                
                save_personal_btn.click(
                    fn=lambda n, a, i, ts: (
                        {2: True},
                        gr.update(elem_classes="completed-tab"),
                        gr.update(interactive=True),
                        gr.update(value="<div class='alert-box'>Information saved!</div>", visible=True)
                    ),
                    inputs=[name, age, interests, tab_completed],
                    outputs=[tab_completed, step3, step4, save_confirmation]
                )

            # ===== TAB 4: SAVE & REVIEW =====
            with gr.Tab("Save Profile", id=3):
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("### Step 4: Review & Save Your Profile")
                        with gr.Group():
                            load_profile_dropdown = gr.Dropdown(
                                label="Load Existing Profile",
                                choices=profile_manager.list_profiles(session_token.value),
                                visible=False
                            )
                            with gr.Row():
                                load_btn = gr.Button("Load", visible=False)
                                delete_btn = gr.Button("Delete", variant="stop", visible=False)
                        
                        save_btn = gr.Button("Save Profile", variant="primary")
                        clear_btn = gr.Button("Clear Form")
                    
                    with gr.Column(scale=2):
                        output_summary = gr.Markdown(
                            "Your profile summary will appear here after saving.",
                            label="Profile Summary"
                        )

                save_btn.click(
                    fn=profile_manager.save_profile,
                    inputs=[
                        name, age, interests, transcript_data, learning_output,
                        movie, movie_reason, show, show_reason,
                        book, book_reason, character, character_reason, blog
                    ],
                    outputs=output_summary
                ).then(
                    fn=lambda: {3: True},
                    inputs=None,
                    outputs=tab_completed
                ).then(
                    fn=lambda: gr.update(elem_classes="completed-tab"),
                    outputs=step4
                ).then(
                    fn=lambda: gr.update(interactive=True),
                    outputs=step5
                ).then(
                    fn=lambda: profile_manager.list_profiles(session_token.value),
                    outputs=load_profile_dropdown
                ).then(
                    fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
                    outputs=load_btn
                ).then(
                    fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
                    outputs=delete_btn
                )

            # ===== TAB 5: AI ASSISTANT =====
            with gr.Tab("AI Assistant", id=4):
                gr.Markdown("## Your Personalized Learning Assistant")
                gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
                
                async def chat_wrapper(message: str, history: List[List[str]]):
                    response = await teaching_assistant.generate_response(
                        message, 
                        history, 
                        session_token.value
                    )
                    return response
                
                chatbot = gr.ChatInterface(
                    fn=chat_wrapper,
                    examples=[
                        "What's my GPA?",
                        "How should I study for math?",
                        "What courses am I taking?",
                        "Study tips for my learning style"
                    ],
                    title=""
                )

        # Navigation logic
        def navigate_to_tab(tab_index: int, tab_completed_status):
            current_tab = tabs.selected
            
            if tab_index <= current_tab:
                return gr.Tabs(selected=tab_index), gr.update(visible=False)
            
            # Check all previous tabs are completed
            for i in range(tab_index):
                if not tab_completed_status.get(i, False):
                    messages = [
                        "Please complete the transcript analysis first",
                        "Please complete the learning style quiz first",
                        "Please fill out your personal information first",
                        "Please save your profile first"
                    ]
                    return (
                        gr.Tabs(selected=i),
                        gr.update(
                            value=f"<div class='error-message'>⛔ {messages[i]}</div>",
                            visible=True
                        )
                    )
            
            return gr.Tabs(selected=tab_index), gr.update(visible=False)
        
        step1.click(
            lambda idx, status: navigate_to_tab(idx, status),
            inputs=[gr.State(0), tab_completed],
            outputs=[tabs, nav_message]
        )
        step2.click(
            lambda idx, status: navigate_to_tab(idx, status),
            inputs=[gr.State(1), tab_completed],
            outputs=[tabs, nav_message]
        )
        step3.click(
            lambda idx, status: navigate_to_tab(idx, status),
            inputs=[gr.State(2), tab_completed],
            outputs=[tabs, nav_message]
        )
        step4.click(
            lambda idx, status: navigate_to_tab(idx, status),
            inputs=[gr.State(3), tab_completed],
            outputs=[tabs, nav_message]
        )
        step5.click(
            lambda idx, status: navigate_to_tab(idx, status),
            inputs=[gr.State(4), tab_completed],
            outputs=[tabs, nav_message]
        )
        
        # Dark mode toggle
        def toggle_dark_mode(dark):
            return gr.themes.Soft(primary_hue="blue", secondary_hue="gray") if not dark else gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate")
        
        dark_mode.change(
            fn=toggle_dark_mode,
            inputs=dark_mode,
            outputs=None
        )
        
        # Load model on startup
        app.load(fn=lambda: model_loader.load_model(), outputs=[])
    
    return app

app = create_interface()

if __name__ == "__main__":
    app.launch()