Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from collections import defaultdict
|
|
8 |
from typing import Dict, List, Optional, Tuple, Union
|
9 |
import html
|
10 |
from pathlib import Path
|
11 |
-
import fitz # PyMuPDF
|
12 |
import pytesseract
|
13 |
from PIL import Image
|
14 |
import io
|
@@ -48,7 +48,7 @@ if HF_TOKEN:
|
|
48 |
except Exception as e:
|
49 |
logging.error(f"Failed to initialize Hugging Face API: {str(e)}")
|
50 |
|
51 |
-
# ==========
|
52 |
class ModelLoader:
|
53 |
def __init__(self):
|
54 |
self.model = None
|
@@ -85,10 +85,6 @@ class ModelLoader:
|
|
85 |
"low_cpu_mem_usage": True
|
86 |
}
|
87 |
|
88 |
-
# Add quantization config for low-memory devices
|
89 |
-
if self.device == "cpu":
|
90 |
-
model_kwargs["load_in_8bit"] = True
|
91 |
-
|
92 |
if progress:
|
93 |
progress(0.3, desc="Loading tokenizer...")
|
94 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
@@ -396,10 +392,6 @@ class TranscriptParser:
|
|
396 |
"completion_status": self._calculate_completion()
|
397 |
}, indent=2)
|
398 |
|
399 |
-
async def parse_transcript_async(file_obj, progress=gr.Progress()):
|
400 |
-
"""Async wrapper for transcript parsing"""
|
401 |
-
return await asyncio.to_thread(parse_transcript, file_obj, progress)
|
402 |
-
|
403 |
def parse_transcript_with_ai(text: str, progress=gr.Progress()) -> Dict:
|
404 |
"""Use AI model to parse transcript text with progress feedback"""
|
405 |
model, tokenizer = model_loader.load_model(progress)
|
@@ -438,7 +430,7 @@ def parse_transcript_with_ai(text: str, progress=gr.Progress()) -> Dict:
|
|
438 |
|
439 |
if progress:
|
440 |
progress(1.0)
|
441 |
-
return
|
442 |
|
443 |
except Exception as e:
|
444 |
logging.warning(f"Structured parsing failed, falling back to AI: {str(e)}")
|
@@ -473,11 +465,11 @@ def parse_transcript_with_ai_fallback(text: str, progress=gr.Progress()) -> Dict
|
|
473 |
progress(0.1, desc="Processing transcript with AI...")
|
474 |
|
475 |
# Tokenize and generate response
|
476 |
-
inputs =
|
477 |
if progress:
|
478 |
progress(0.4)
|
479 |
|
480 |
-
outputs =
|
481 |
**inputs,
|
482 |
max_new_tokens=1500,
|
483 |
temperature=0.1,
|
@@ -487,7 +479,7 @@ def parse_transcript_with_ai_fallback(text: str, progress=gr.Progress()) -> Dict
|
|
487 |
progress(0.8)
|
488 |
|
489 |
# Decode the response
|
490 |
-
response =
|
491 |
|
492 |
# Extract JSON from response
|
493 |
try:
|
@@ -500,7 +492,7 @@ def parse_transcript_with_ai_fallback(text: str, progress=gr.Progress()) -> Dict
|
|
500 |
|
501 |
if progress:
|
502 |
progress(1.0)
|
503 |
-
return
|
504 |
|
505 |
except torch.cuda.OutOfMemoryError:
|
506 |
raise gr.Error("The model ran out of memory. Try with a smaller transcript.")
|
@@ -508,32 +500,6 @@ def parse_transcript_with_ai_fallback(text: str, progress=gr.Progress()) -> Dict
|
|
508 |
logging.error(f"AI parsing error: {str(e)}")
|
509 |
raise gr.Error(f"Error processing transcript: {str(e)}")
|
510 |
|
511 |
-
def validate_parsed_data(data: Dict) -> Dict:
|
512 |
-
"""Validate and clean the parsed data structure."""
|
513 |
-
if not isinstance(data, dict):
|
514 |
-
raise ValueError("Invalid data format")
|
515 |
-
|
516 |
-
# Set default structure if missing
|
517 |
-
if 'grade_level' not in data:
|
518 |
-
data['grade_level'] = 'Unknown'
|
519 |
-
|
520 |
-
if 'gpa' not in data:
|
521 |
-
data['gpa'] = {'weighted': 'N/A', 'unweighted': 'N/A'}
|
522 |
-
|
523 |
-
if 'courses' not in data:
|
524 |
-
data['courses'] = []
|
525 |
-
|
526 |
-
# Clean course data
|
527 |
-
for course in data['courses']:
|
528 |
-
if 'grade' in course:
|
529 |
-
course['grade'] = course['grade'].upper().strip()
|
530 |
-
|
531 |
-
# Ensure numeric credits are strings
|
532 |
-
if 'credits' in course and isinstance(course['credits'], (int, float)):
|
533 |
-
course['credits'] = str(course['credits'])
|
534 |
-
|
535 |
-
return data
|
536 |
-
|
537 |
def format_transcript_output(data: Dict) -> str:
|
538 |
"""Format the parsed data into human-readable text."""
|
539 |
output = []
|
@@ -1243,130 +1209,66 @@ def create_interface():
|
|
1243 |
4: False # AI Assistant
|
1244 |
})
|
1245 |
|
1246 |
-
# Custom CSS
|
1247 |
app.css = """
|
1248 |
-
.gradio-container {
|
1249 |
-
|
1250 |
-
|
1251 |
-
}
|
1252 |
-
.
|
1253 |
-
|
1254 |
-
|
1255 |
-
|
1256 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
1257 |
-
}
|
1258 |
-
.progress-bar {
|
1259 |
-
height: 5px;
|
1260 |
-
background: linear-gradient(to right, #4CAF50, #8BC34A);
|
1261 |
-
margin-bottom: 15px;
|
1262 |
-
border-radius: 3px;
|
1263 |
-
}
|
1264 |
-
.quiz-question {
|
1265 |
-
margin-bottom: 15px;
|
1266 |
-
padding: 15px;
|
1267 |
-
background: #f5f5f5;
|
1268 |
-
border-radius: 5px;
|
1269 |
-
}
|
1270 |
-
.profile-card {
|
1271 |
-
border: 1px solid #e0e0e0;
|
1272 |
-
border-radius: 8px;
|
1273 |
-
padding: 15px;
|
1274 |
-
margin-bottom: 15px;
|
1275 |
-
background: white;
|
1276 |
-
}
|
1277 |
-
.chatbot {
|
1278 |
-
min-height: 500px;
|
1279 |
-
}
|
1280 |
-
.completed-tab {
|
1281 |
-
background: #2196F3 !important;
|
1282 |
-
color: white !important;
|
1283 |
-
}
|
1284 |
-
.incomplete-tab {
|
1285 |
-
background: #E0E0E0 !important;
|
1286 |
-
}
|
1287 |
-
.alert-box {
|
1288 |
-
padding: 15px;
|
1289 |
-
margin-bottom: 20px;
|
1290 |
-
border: 1px solid transparent;
|
1291 |
-
border-radius: 4px;
|
1292 |
-
color: #31708f;
|
1293 |
-
background-color: #d9edf7;
|
1294 |
-
border-color: #bce8f1;
|
1295 |
-
}
|
1296 |
-
.nav-message {
|
1297 |
-
padding: 10px;
|
1298 |
-
margin: 10px 0;
|
1299 |
-
border-radius: 4px;
|
1300 |
-
background-color: #ffebee;
|
1301 |
-
color: #c62828;
|
1302 |
-
}
|
1303 |
-
.model-loading {
|
1304 |
-
padding: 15px;
|
1305 |
-
margin: 15px 0;
|
1306 |
-
border-radius: 4px;
|
1307 |
-
background-color: #fff3e0;
|
1308 |
-
color: #e65100;
|
1309 |
-
}
|
1310 |
"""
|
1311 |
|
|
|
1312 |
gr.Markdown("""
|
1313 |
# Student Learning Assistant
|
1314 |
**Your personalized education companion**
|
1315 |
Complete each step to get customized learning recommendations.
|
1316 |
""")
|
1317 |
-
|
1318 |
-
#
|
1319 |
with gr.Row():
|
1320 |
-
with gr.Column(scale=1):
|
1321 |
-
step1 = gr.Button("1.
|
1322 |
-
with gr.Column(scale=1):
|
1323 |
-
step2 = gr.Button("2.
|
1324 |
-
with gr.Column(scale=1):
|
1325 |
-
step3 = gr.Button("3.
|
1326 |
-
with gr.Column(scale=1):
|
1327 |
-
step4 = gr.Button("4.
|
1328 |
-
with gr.Column(scale=1):
|
1329 |
-
step5 = gr.Button("5.
|
1330 |
-
|
1331 |
-
|
1332 |
-
|
1333 |
-
|
1334 |
-
|
1335 |
-
|
1336 |
-
|
1337 |
-
# Main tabs (hidden since we're using the button navigation)
|
1338 |
-
with gr.Tabs(visible=False) as tabs:
|
1339 |
-
# ===== TAB 1: Transcript Upload =====
|
1340 |
-
with gr.Tab("Transcript Upload", id=0) as tab1:
|
1341 |
with gr.Row():
|
1342 |
with gr.Column(scale=1):
|
1343 |
gr.Markdown("### Step 1: Upload Your Transcript")
|
1344 |
-
gr.
|
1345 |
-
|
1346 |
-
|
1347 |
-
transcript_file = gr.File(
|
1348 |
-
label="Transcript (PDF or Image)",
|
1349 |
file_types=ALLOWED_FILE_TYPES,
|
1350 |
type="filepath"
|
1351 |
)
|
1352 |
-
upload_btn = gr.Button("
|
1353 |
-
|
1354 |
-
gr.Markdown("""
|
1355 |
-
**Supported Formats**: PDF, PNG, JPG
|
1356 |
-
**Note**: Your file is processed locally and not stored permanently.
|
1357 |
-
""")
|
1358 |
|
1359 |
with gr.Column(scale=2):
|
1360 |
transcript_output = gr.Textbox(
|
1361 |
-
label="
|
1362 |
lines=20,
|
1363 |
interactive=False
|
1364 |
)
|
1365 |
transcript_data = gr.State()
|
1366 |
-
|
1367 |
-
def
|
1368 |
try:
|
1369 |
-
output_text, data = parse_transcript(file_obj
|
1370 |
if "Error" not in output_text:
|
1371 |
new_status = current_tab_status.copy()
|
1372 |
new_status[0] = True
|
@@ -1379,9 +1281,8 @@ def create_interface():
|
|
1379 |
gr.update(visible=False)
|
1380 |
)
|
1381 |
except Exception as e:
|
1382 |
-
logging.error(f"Upload error: {str(e)}")
|
1383 |
return (
|
1384 |
-
f"Error
|
1385 |
None,
|
1386 |
current_tab_status,
|
1387 |
gr.update(),
|
@@ -1390,21 +1291,19 @@ def create_interface():
|
|
1390 |
)
|
1391 |
|
1392 |
upload_btn.click(
|
1393 |
-
|
1394 |
-
inputs=[
|
1395 |
-
outputs=[transcript_output, transcript_data, tab_completed, step1, step2, nav_message]
|
1396 |
-
concurrency_limit=1
|
1397 |
)
|
1398 |
-
|
1399 |
-
# ===== TAB 2:
|
1400 |
-
with gr.Tab("Learning Style Quiz", id=1)
|
1401 |
with gr.Row():
|
1402 |
with gr.Column(scale=1):
|
1403 |
gr.Markdown("### Step 2: Discover Your Learning Style")
|
1404 |
-
gr.Markdown("Complete this 20-question quiz to identify whether you're a visual, auditory, reading/writing, or kinesthetic learner.")
|
1405 |
-
|
1406 |
progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>")
|
1407 |
quiz_submit = gr.Button("Submit Quiz", variant="primary")
|
|
|
1408 |
|
1409 |
with gr.Column(scale=2):
|
1410 |
quiz_components = []
|
@@ -1422,7 +1321,7 @@ def create_interface():
|
|
1422 |
label="Your Learning Style Results",
|
1423 |
visible=False
|
1424 |
)
|
1425 |
-
|
1426 |
# Update progress bar as questions are answered
|
1427 |
for component in quiz_components:
|
1428 |
component.change(
|
@@ -1436,7 +1335,6 @@ def create_interface():
|
|
1436 |
)
|
1437 |
|
1438 |
def submit_quiz_and_update(*args):
|
1439 |
-
# The first argument is the tab_completed state, followed by answers
|
1440 |
current_tab_status = args[0]
|
1441 |
answers = args[1:]
|
1442 |
|
@@ -1450,11 +1348,10 @@ def create_interface():
|
|
1450 |
new_status,
|
1451 |
gr.update(elem_classes="completed-tab"),
|
1452 |
gr.update(interactive=True),
|
1453 |
-
gr.update(value="<div class='alert-box'>Quiz submitted successfully
|
1454 |
gr.update(visible=False)
|
1455 |
)
|
1456 |
except Exception as e:
|
1457 |
-
logging.error(f"Quiz error: {str(e)}")
|
1458 |
return (
|
1459 |
f"Error evaluating quiz: {str(e)}",
|
1460 |
gr.update(visible=True),
|
@@ -1470,14 +1367,12 @@ def create_interface():
|
|
1470 |
inputs=[tab_completed] + quiz_components,
|
1471 |
outputs=[learning_output, learning_output, tab_completed, step2, step3, quiz_alert, nav_message]
|
1472 |
)
|
1473 |
-
|
1474 |
-
# ===== TAB 3:
|
1475 |
-
with gr.Tab("Personal Profile", id=2)
|
1476 |
with gr.Row():
|
1477 |
with gr.Column(scale=1):
|
1478 |
gr.Markdown("### Step 3: Tell Us About Yourself")
|
1479 |
-
gr.Markdown("This information helps us provide personalized recommendations.")
|
1480 |
-
|
1481 |
with gr.Group():
|
1482 |
name = gr.Textbox(label="Full Name", placeholder="Your name")
|
1483 |
age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0)
|
@@ -1488,7 +1383,8 @@ def create_interface():
|
|
1488 |
|
1489 |
save_personal_btn = gr.Button("Save Information", variant="primary")
|
1490 |
save_confirmation = gr.HTML(visible=False)
|
1491 |
-
|
|
|
1492 |
gr.Markdown("### Favorites")
|
1493 |
with gr.Group():
|
1494 |
movie = gr.Textbox(label="Favorite Movie")
|
@@ -1499,25 +1395,6 @@ def create_interface():
|
|
1499 |
book_reason = gr.Textbox(label="Why do you like it?", lines=2)
|
1500 |
character = gr.Textbox(label="Favorite Character (from any story)")
|
1501 |
character_reason = gr.Textbox(label="Why do you like them?", lines=2)
|
1502 |
-
|
1503 |
-
with gr.Column(scale=1):
|
1504 |
-
gr.Markdown("### Additional Information")
|
1505 |
-
|
1506 |
-
blog_checkbox = gr.Checkbox(
|
1507 |
-
label="Would you like to write a short blog about your learning experiences?",
|
1508 |
-
value=False
|
1509 |
-
)
|
1510 |
-
blog_text = gr.Textbox(
|
1511 |
-
label="Your Learning Blog",
|
1512 |
-
placeholder="Write about your learning journey, challenges, goals...",
|
1513 |
-
lines=8,
|
1514 |
-
visible=False
|
1515 |
-
)
|
1516 |
-
blog_checkbox.change(
|
1517 |
-
lambda x: gr.update(visible=x),
|
1518 |
-
inputs=blog_checkbox,
|
1519 |
-
outputs=blog_text
|
1520 |
-
)
|
1521 |
|
1522 |
def save_personal_info(name, age, interests, current_tab_status):
|
1523 |
try:
|
@@ -1548,27 +1425,23 @@ def create_interface():
|
|
1548 |
inputs=[name, age, interests, tab_completed],
|
1549 |
outputs=[tab_completed, step3, step4, save_confirmation, nav_message]
|
1550 |
)
|
1551 |
-
|
1552 |
-
# ===== TAB 4:
|
1553 |
-
with gr.Tab("Save Profile", id=3)
|
1554 |
with gr.Row():
|
1555 |
with gr.Column(scale=1):
|
1556 |
gr.Markdown("### Step 4: Review & Save Your Profile")
|
1557 |
-
gr.Markdown("Verify your information before saving. You can return to previous steps to make changes.")
|
1558 |
-
|
1559 |
-
save_btn = gr.Button("Save Profile", variant="primary")
|
1560 |
-
|
1561 |
-
# Profile management section
|
1562 |
with gr.Group():
|
1563 |
load_profile_dropdown = gr.Dropdown(
|
1564 |
label="Load Existing Profile",
|
1565 |
choices=profile_manager.list_profiles(session_token.value),
|
1566 |
-
visible=
|
1567 |
)
|
1568 |
with gr.Row():
|
1569 |
-
load_btn = gr.Button("Load", visible=
|
1570 |
-
delete_btn = gr.Button("Delete", variant="stop", visible=
|
1571 |
|
|
|
1572 |
clear_btn = gr.Button("Clear Form")
|
1573 |
|
1574 |
with gr.Column(scale=2):
|
@@ -1576,21 +1449,15 @@ def create_interface():
|
|
1576 |
"Your profile summary will appear here after saving.",
|
1577 |
label="Profile Summary"
|
1578 |
)
|
1579 |
-
|
1580 |
-
# Save profile
|
1581 |
def save_profile_and_update(*args):
|
1582 |
-
# Extract inputs
|
1583 |
inputs = args[:-1] # All except the last which is tab_completed
|
1584 |
current_tab_status = args[-1]
|
1585 |
|
1586 |
try:
|
1587 |
-
# Call the original save function
|
1588 |
summary = profile_manager.save_profile(*inputs)
|
1589 |
-
|
1590 |
-
# Update completion status
|
1591 |
new_status = current_tab_status.copy()
|
1592 |
new_status[3] = True
|
1593 |
-
|
1594 |
return (
|
1595 |
summary,
|
1596 |
new_status,
|
@@ -1599,7 +1466,6 @@ def create_interface():
|
|
1599 |
gr.update(visible=False)
|
1600 |
)
|
1601 |
except Exception as e:
|
1602 |
-
logging.error(f"Save profile error: {str(e)}")
|
1603 |
return (
|
1604 |
f"Error saving profile: {str(e)}",
|
1605 |
current_tab_status,
|
@@ -1613,7 +1479,7 @@ def create_interface():
|
|
1613 |
inputs=[
|
1614 |
name, age, interests, transcript_data, learning_output,
|
1615 |
movie, movie_reason, show, show_reason,
|
1616 |
-
book, book_reason, character, character_reason,
|
1617 |
tab_completed
|
1618 |
],
|
1619 |
outputs=[output_summary, tab_completed, step4, step5, nav_message]
|
@@ -1628,14 +1494,6 @@ def create_interface():
|
|
1628 |
outputs=delete_btn
|
1629 |
)
|
1630 |
|
1631 |
-
# Load profile
|
1632 |
-
load_btn.click(
|
1633 |
-
fn=lambda name: profile_manager.load_profile(name, session_token.value),
|
1634 |
-
inputs=load_profile_dropdown,
|
1635 |
-
outputs=output_summary
|
1636 |
-
)
|
1637 |
-
|
1638 |
-
# Delete profile
|
1639 |
def delete_profile(name, session_token):
|
1640 |
if not name:
|
1641 |
raise gr.Error("Please select a profile to delete")
|
@@ -1645,7 +1503,6 @@ def create_interface():
|
|
1645 |
profile_path.unlink()
|
1646 |
return "Profile deleted successfully", ""
|
1647 |
except Exception as e:
|
1648 |
-
logging.error(f"Delete profile error: {str(e)}")
|
1649 |
raise gr.Error(f"Error deleting profile: {str(e)}")
|
1650 |
|
1651 |
delete_btn.click(
|
@@ -1653,10 +1510,7 @@ def create_interface():
|
|
1653 |
inputs=[load_profile_dropdown, session_token],
|
1654 |
outputs=[output_summary, load_profile_dropdown]
|
1655 |
).then(
|
1656 |
-
fn=lambda:
|
1657 |
-
choices=profile_manager.list_profiles(session_token.value),
|
1658 |
-
visible=bool(profile_manager.list_profiles(session_token.value))
|
1659 |
-
),
|
1660 |
outputs=load_profile_dropdown
|
1661 |
).then(
|
1662 |
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
|
@@ -1666,32 +1520,21 @@ def create_interface():
|
|
1666 |
outputs=delete_btn
|
1667 |
)
|
1668 |
|
1669 |
-
# Clear form
|
1670 |
clear_btn.click(
|
1671 |
fn=lambda: [gr.update(value="") for _ in range(12)],
|
1672 |
outputs=[
|
1673 |
name, age, interests,
|
1674 |
movie, movie_reason, show, show_reason,
|
1675 |
book, book_reason, character, character_reason,
|
1676 |
-
|
1677 |
]
|
1678 |
-
).then(
|
1679 |
-
fn=lambda: gr.update(value=""),
|
1680 |
-
outputs=output_summary
|
1681 |
-
).then(
|
1682 |
-
fn=lambda: gr.update(value=False),
|
1683 |
-
outputs=blog_checkbox
|
1684 |
-
).then(
|
1685 |
-
fn=lambda: gr.update(visible=False),
|
1686 |
-
outputs=blog_text
|
1687 |
)
|
1688 |
-
|
1689 |
-
# ===== TAB 5: AI
|
1690 |
-
with gr.Tab("AI Assistant", id=4)
|
1691 |
gr.Markdown("## Your Personalized Learning Assistant")
|
1692 |
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
|
1693 |
|
1694 |
-
# Chat interface with session token
|
1695 |
chatbot = gr.ChatInterface(
|
1696 |
fn=lambda msg, hist: teaching_assistant.generate_response(msg, hist, session_token.value),
|
1697 |
examples=[
|
@@ -1703,8 +1546,8 @@ def create_interface():
|
|
1703 |
],
|
1704 |
title=""
|
1705 |
)
|
1706 |
-
|
1707 |
-
#
|
1708 |
def navigate_to_tab(tab_index: int, tab_completed_status):
|
1709 |
current_tab = tabs.selected
|
1710 |
|
@@ -1716,48 +1559,46 @@ def create_interface():
|
|
1716 |
if not tab_completed_status.get(current_tab, False):
|
1717 |
return (
|
1718 |
gr.Tabs(selected=current_tab),
|
1719 |
-
gr.update(value=f"⚠️ Complete Step {current_tab+1} first!", visible=True)
|
|
|
1720 |
|
1721 |
return gr.Tabs(selected=tab_index), gr.update(visible=False)
|
1722 |
|
|
|
1723 |
step1.click(
|
1724 |
-
|
1725 |
inputs=[gr.State(0), tab_completed],
|
1726 |
outputs=[tabs, nav_message]
|
1727 |
)
|
1728 |
step2.click(
|
1729 |
-
|
1730 |
inputs=[gr.State(1), tab_completed],
|
1731 |
outputs=[tabs, nav_message]
|
1732 |
)
|
1733 |
step3.click(
|
1734 |
-
|
1735 |
inputs=[gr.State(2), tab_completed],
|
1736 |
outputs=[tabs, nav_message]
|
1737 |
)
|
1738 |
step4.click(
|
1739 |
-
|
1740 |
inputs=[gr.State(3), tab_completed],
|
1741 |
outputs=[tabs, nav_message]
|
1742 |
)
|
1743 |
step5.click(
|
1744 |
-
|
1745 |
inputs=[gr.State(4), tab_completed],
|
1746 |
outputs=[tabs, nav_message]
|
1747 |
)
|
1748 |
|
1749 |
-
# Load
|
1750 |
-
app.load(
|
1751 |
-
fn=lambda: model_loader.load_model(),
|
1752 |
-
outputs=[]
|
1753 |
-
)
|
1754 |
|
1755 |
return app
|
1756 |
|
1757 |
-
# Create the interface
|
1758 |
app = create_interface()
|
1759 |
|
1760 |
-
# For Hugging Face Spaces deployment
|
1761 |
if __name__ == "__main__":
|
1762 |
app.launch()
|
1763 |
|
|
|
8 |
from typing import Dict, List, Optional, Tuple, Union
|
9 |
import html
|
10 |
from pathlib import Path
|
11 |
+
import fitz # PyMuPDF
|
12 |
import pytesseract
|
13 |
from PIL import Image
|
14 |
import io
|
|
|
48 |
except Exception as e:
|
49 |
logging.error(f"Failed to initialize Hugging Face API: {str(e)}")
|
50 |
|
51 |
+
# ========== MODEL LOADER ==========
|
52 |
class ModelLoader:
|
53 |
def __init__(self):
|
54 |
self.model = None
|
|
|
85 |
"low_cpu_mem_usage": True
|
86 |
}
|
87 |
|
|
|
|
|
|
|
|
|
88 |
if progress:
|
89 |
progress(0.3, desc="Loading tokenizer...")
|
90 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
392 |
"completion_status": self._calculate_completion()
|
393 |
}, indent=2)
|
394 |
|
|
|
|
|
|
|
|
|
395 |
def parse_transcript_with_ai(text: str, progress=gr.Progress()) -> Dict:
|
396 |
"""Use AI model to parse transcript text with progress feedback"""
|
397 |
model, tokenizer = model_loader.load_model(progress)
|
|
|
430 |
|
431 |
if progress:
|
432 |
progress(1.0)
|
433 |
+
return formatted_data
|
434 |
|
435 |
except Exception as e:
|
436 |
logging.warning(f"Structured parsing failed, falling back to AI: {str(e)}")
|
|
|
465 |
progress(0.1, desc="Processing transcript with AI...")
|
466 |
|
467 |
# Tokenize and generate response
|
468 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model_loader.device)
|
469 |
if progress:
|
470 |
progress(0.4)
|
471 |
|
472 |
+
outputs = model.generate(
|
473 |
**inputs,
|
474 |
max_new_tokens=1500,
|
475 |
temperature=0.1,
|
|
|
479 |
progress(0.8)
|
480 |
|
481 |
# Decode the response
|
482 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
483 |
|
484 |
# Extract JSON from response
|
485 |
try:
|
|
|
492 |
|
493 |
if progress:
|
494 |
progress(1.0)
|
495 |
+
return parsed_data
|
496 |
|
497 |
except torch.cuda.OutOfMemoryError:
|
498 |
raise gr.Error("The model ran out of memory. Try with a smaller transcript.")
|
|
|
500 |
logging.error(f"AI parsing error: {str(e)}")
|
501 |
raise gr.Error(f"Error processing transcript: {str(e)}")
|
502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
def format_transcript_output(data: Dict) -> str:
|
504 |
"""Format the parsed data into human-readable text."""
|
505 |
output = []
|
|
|
1209 |
4: False # AI Assistant
|
1210 |
})
|
1211 |
|
1212 |
+
# Custom CSS
|
1213 |
app.css = """
|
1214 |
+
.gradio-container { max-width: 1200px !important; margin: 0 auto !important; }
|
1215 |
+
.tab-content { padding: 20px !important; border: 1px solid #e0e0e0 !important; border-radius: 8px !important; margin-top: 10px !important; }
|
1216 |
+
.completed-tab { background: #4CAF50 !important; color: white !important; }
|
1217 |
+
.incomplete-tab { background: #E0E0E0 !important; }
|
1218 |
+
.nav-message { padding: 10px; margin: 10px 0; border-radius: 4px; background-color: #ffebee; color: #c62828; }
|
1219 |
+
.file-upload { border: 2px dashed #4CAF50 !important; padding: 20px !important; border-radius: 8px !important; }
|
1220 |
+
.progress-bar { height: 5px; background: linear-gradient(to right, #4CAF50, #8BC34A); margin-bottom: 15px; border-radius: 3px; }
|
1221 |
+
.quiz-question { margin-bottom: 15px; padding: 15px; background: #f5f5f5; border-radius: 5px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1222 |
"""
|
1223 |
|
1224 |
+
# Header
|
1225 |
gr.Markdown("""
|
1226 |
# Student Learning Assistant
|
1227 |
**Your personalized education companion**
|
1228 |
Complete each step to get customized learning recommendations.
|
1229 |
""")
|
1230 |
+
|
1231 |
+
# Navigation buttons
|
1232 |
with gr.Row():
|
1233 |
+
with gr.Column(scale=1, min_width=100):
|
1234 |
+
step1 = gr.Button("1. Transcript", elem_classes="incomplete-tab")
|
1235 |
+
with gr.Column(scale=1, min_width=100):
|
1236 |
+
step2 = gr.Button("2. Quiz", elem_classes="incomplete-tab", interactive=False)
|
1237 |
+
with gr.Column(scale=1, min_width=100):
|
1238 |
+
step3 = gr.Button("3. Profile", elem_classes="incomplete-tab", interactive=False)
|
1239 |
+
with gr.Column(scale=1, min_width=100):
|
1240 |
+
step4 = gr.Button("4. Review", elem_classes="incomplete-tab", interactive=False)
|
1241 |
+
with gr.Column(scale=1, min_width=100):
|
1242 |
+
step5 = gr.Button("5. Assistant", elem_classes="incomplete-tab", interactive=False)
|
1243 |
+
|
1244 |
+
nav_message = gr.HTML(visible=False)
|
1245 |
+
|
1246 |
+
# Main tabs container - Now VISIBLE
|
1247 |
+
with gr.Tabs(visible=True) as tabs:
|
1248 |
+
# ===== TAB 1: TRANSCRIPT UPLOAD =====
|
1249 |
+
with gr.Tab("Transcript", id=0):
|
|
|
|
|
|
|
|
|
1250 |
with gr.Row():
|
1251 |
with gr.Column(scale=1):
|
1252 |
gr.Markdown("### Step 1: Upload Your Transcript")
|
1253 |
+
with gr.Group(elem_classes="file-upload"):
|
1254 |
+
file_input = gr.File(
|
1255 |
+
label="Drag and drop your transcript here (PDF or Image)",
|
|
|
|
|
1256 |
file_types=ALLOWED_FILE_TYPES,
|
1257 |
type="filepath"
|
1258 |
)
|
1259 |
+
upload_btn = gr.Button("Analyze Transcript", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
1260 |
|
1261 |
with gr.Column(scale=2):
|
1262 |
transcript_output = gr.Textbox(
|
1263 |
+
label="Analysis Results",
|
1264 |
lines=20,
|
1265 |
interactive=False
|
1266 |
)
|
1267 |
transcript_data = gr.State()
|
1268 |
+
|
1269 |
+
def process_transcript(file_obj, current_tab_status):
|
1270 |
try:
|
1271 |
+
output_text, data = parse_transcript(file_obj)
|
1272 |
if "Error" not in output_text:
|
1273 |
new_status = current_tab_status.copy()
|
1274 |
new_status[0] = True
|
|
|
1281 |
gr.update(visible=False)
|
1282 |
)
|
1283 |
except Exception as e:
|
|
|
1284 |
return (
|
1285 |
+
f"Error: {str(e)}",
|
1286 |
None,
|
1287 |
current_tab_status,
|
1288 |
gr.update(),
|
|
|
1291 |
)
|
1292 |
|
1293 |
upload_btn.click(
|
1294 |
+
process_transcript,
|
1295 |
+
inputs=[file_input, tab_completed],
|
1296 |
+
outputs=[transcript_output, transcript_data, tab_completed, step1, step2, nav_message]
|
|
|
1297 |
)
|
1298 |
+
|
1299 |
+
# ===== TAB 2: LEARNING STYLE QUIZ =====
|
1300 |
+
with gr.Tab("Learning Style Quiz", id=1):
|
1301 |
with gr.Row():
|
1302 |
with gr.Column(scale=1):
|
1303 |
gr.Markdown("### Step 2: Discover Your Learning Style")
|
|
|
|
|
1304 |
progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>")
|
1305 |
quiz_submit = gr.Button("Submit Quiz", variant="primary")
|
1306 |
+
quiz_alert = gr.HTML(visible=False)
|
1307 |
|
1308 |
with gr.Column(scale=2):
|
1309 |
quiz_components = []
|
|
|
1321 |
label="Your Learning Style Results",
|
1322 |
visible=False
|
1323 |
)
|
1324 |
+
|
1325 |
# Update progress bar as questions are answered
|
1326 |
for component in quiz_components:
|
1327 |
component.change(
|
|
|
1335 |
)
|
1336 |
|
1337 |
def submit_quiz_and_update(*args):
|
|
|
1338 |
current_tab_status = args[0]
|
1339 |
answers = args[1:]
|
1340 |
|
|
|
1348 |
new_status,
|
1349 |
gr.update(elem_classes="completed-tab"),
|
1350 |
gr.update(interactive=True),
|
1351 |
+
gr.update(value="<div class='alert-box'>Quiz submitted successfully!</div>", visible=True),
|
1352 |
gr.update(visible=False)
|
1353 |
)
|
1354 |
except Exception as e:
|
|
|
1355 |
return (
|
1356 |
f"Error evaluating quiz: {str(e)}",
|
1357 |
gr.update(visible=True),
|
|
|
1367 |
inputs=[tab_completed] + quiz_components,
|
1368 |
outputs=[learning_output, learning_output, tab_completed, step2, step3, quiz_alert, nav_message]
|
1369 |
)
|
1370 |
+
|
1371 |
+
# ===== TAB 3: PERSONAL QUESTIONS =====
|
1372 |
+
with gr.Tab("Personal Profile", id=2):
|
1373 |
with gr.Row():
|
1374 |
with gr.Column(scale=1):
|
1375 |
gr.Markdown("### Step 3: Tell Us About Yourself")
|
|
|
|
|
1376 |
with gr.Group():
|
1377 |
name = gr.Textbox(label="Full Name", placeholder="Your name")
|
1378 |
age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0)
|
|
|
1383 |
|
1384 |
save_personal_btn = gr.Button("Save Information", variant="primary")
|
1385 |
save_confirmation = gr.HTML(visible=False)
|
1386 |
+
|
1387 |
+
with gr.Column(scale=1):
|
1388 |
gr.Markdown("### Favorites")
|
1389 |
with gr.Group():
|
1390 |
movie = gr.Textbox(label="Favorite Movie")
|
|
|
1395 |
book_reason = gr.Textbox(label="Why do you like it?", lines=2)
|
1396 |
character = gr.Textbox(label="Favorite Character (from any story)")
|
1397 |
character_reason = gr.Textbox(label="Why do you like them?", lines=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1398 |
|
1399 |
def save_personal_info(name, age, interests, current_tab_status):
|
1400 |
try:
|
|
|
1425 |
inputs=[name, age, interests, tab_completed],
|
1426 |
outputs=[tab_completed, step3, step4, save_confirmation, nav_message]
|
1427 |
)
|
1428 |
+
|
1429 |
+
# ===== TAB 4: SAVE & REVIEW =====
|
1430 |
+
with gr.Tab("Save Profile", id=3):
|
1431 |
with gr.Row():
|
1432 |
with gr.Column(scale=1):
|
1433 |
gr.Markdown("### Step 4: Review & Save Your Profile")
|
|
|
|
|
|
|
|
|
|
|
1434 |
with gr.Group():
|
1435 |
load_profile_dropdown = gr.Dropdown(
|
1436 |
label="Load Existing Profile",
|
1437 |
choices=profile_manager.list_profiles(session_token.value),
|
1438 |
+
visible=False
|
1439 |
)
|
1440 |
with gr.Row():
|
1441 |
+
load_btn = gr.Button("Load", visible=False)
|
1442 |
+
delete_btn = gr.Button("Delete", variant="stop", visible=False)
|
1443 |
|
1444 |
+
save_btn = gr.Button("Save Profile", variant="primary")
|
1445 |
clear_btn = gr.Button("Clear Form")
|
1446 |
|
1447 |
with gr.Column(scale=2):
|
|
|
1449 |
"Your profile summary will appear here after saving.",
|
1450 |
label="Profile Summary"
|
1451 |
)
|
1452 |
+
|
|
|
1453 |
def save_profile_and_update(*args):
|
|
|
1454 |
inputs = args[:-1] # All except the last which is tab_completed
|
1455 |
current_tab_status = args[-1]
|
1456 |
|
1457 |
try:
|
|
|
1458 |
summary = profile_manager.save_profile(*inputs)
|
|
|
|
|
1459 |
new_status = current_tab_status.copy()
|
1460 |
new_status[3] = True
|
|
|
1461 |
return (
|
1462 |
summary,
|
1463 |
new_status,
|
|
|
1466 |
gr.update(visible=False)
|
1467 |
)
|
1468 |
except Exception as e:
|
|
|
1469 |
return (
|
1470 |
f"Error saving profile: {str(e)}",
|
1471 |
current_tab_status,
|
|
|
1479 |
inputs=[
|
1480 |
name, age, interests, transcript_data, learning_output,
|
1481 |
movie, movie_reason, show, show_reason,
|
1482 |
+
book, book_reason, character, character_reason, "",
|
1483 |
tab_completed
|
1484 |
],
|
1485 |
outputs=[output_summary, tab_completed, step4, step5, nav_message]
|
|
|
1494 |
outputs=delete_btn
|
1495 |
)
|
1496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1497 |
def delete_profile(name, session_token):
|
1498 |
if not name:
|
1499 |
raise gr.Error("Please select a profile to delete")
|
|
|
1503 |
profile_path.unlink()
|
1504 |
return "Profile deleted successfully", ""
|
1505 |
except Exception as e:
|
|
|
1506 |
raise gr.Error(f"Error deleting profile: {str(e)}")
|
1507 |
|
1508 |
delete_btn.click(
|
|
|
1510 |
inputs=[load_profile_dropdown, session_token],
|
1511 |
outputs=[output_summary, load_profile_dropdown]
|
1512 |
).then(
|
1513 |
+
fn=lambda: profile_manager.list_profiles(session_token.value),
|
|
|
|
|
|
|
1514 |
outputs=load_profile_dropdown
|
1515 |
).then(
|
1516 |
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
|
|
|
1520 |
outputs=delete_btn
|
1521 |
)
|
1522 |
|
|
|
1523 |
clear_btn.click(
|
1524 |
fn=lambda: [gr.update(value="") for _ in range(12)],
|
1525 |
outputs=[
|
1526 |
name, age, interests,
|
1527 |
movie, movie_reason, show, show_reason,
|
1528 |
book, book_reason, character, character_reason,
|
1529 |
+
output_summary
|
1530 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1531 |
)
|
1532 |
+
|
1533 |
+
# ===== TAB 5: AI ASSISTANT =====
|
1534 |
+
with gr.Tab("AI Assistant", id=4):
|
1535 |
gr.Markdown("## Your Personalized Learning Assistant")
|
1536 |
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
|
1537 |
|
|
|
1538 |
chatbot = gr.ChatInterface(
|
1539 |
fn=lambda msg, hist: teaching_assistant.generate_response(msg, hist, session_token.value),
|
1540 |
examples=[
|
|
|
1546 |
],
|
1547 |
title=""
|
1548 |
)
|
1549 |
+
|
1550 |
+
# Navigation logic
|
1551 |
def navigate_to_tab(tab_index: int, tab_completed_status):
|
1552 |
current_tab = tabs.selected
|
1553 |
|
|
|
1559 |
if not tab_completed_status.get(current_tab, False):
|
1560 |
return (
|
1561 |
gr.Tabs(selected=current_tab),
|
1562 |
+
gr.update(value=f"⚠️ Complete Step {current_tab+1} first!", visible=True)
|
1563 |
+
)
|
1564 |
|
1565 |
return gr.Tabs(selected=tab_index), gr.update(visible=False)
|
1566 |
|
1567 |
+
# Connect navigation buttons
|
1568 |
step1.click(
|
1569 |
+
lambda idx, status: navigate_to_tab(idx, status),
|
1570 |
inputs=[gr.State(0), tab_completed],
|
1571 |
outputs=[tabs, nav_message]
|
1572 |
)
|
1573 |
step2.click(
|
1574 |
+
lambda idx, status: navigate_to_tab(idx, status),
|
1575 |
inputs=[gr.State(1), tab_completed],
|
1576 |
outputs=[tabs, nav_message]
|
1577 |
)
|
1578 |
step3.click(
|
1579 |
+
lambda idx, status: navigate_to_tab(idx, status),
|
1580 |
inputs=[gr.State(2), tab_completed],
|
1581 |
outputs=[tabs, nav_message]
|
1582 |
)
|
1583 |
step4.click(
|
1584 |
+
lambda idx, status: navigate_to_tab(idx, status),
|
1585 |
inputs=[gr.State(3), tab_completed],
|
1586 |
outputs=[tabs, nav_message]
|
1587 |
)
|
1588 |
step5.click(
|
1589 |
+
lambda idx, status: navigate_to_tab(idx, status),
|
1590 |
inputs=[gr.State(4), tab_completed],
|
1591 |
outputs=[tabs, nav_message]
|
1592 |
)
|
1593 |
|
1594 |
+
# Load model on startup
|
1595 |
+
app.load(fn=lambda: model_loader.load_model(), outputs=[])
|
|
|
|
|
|
|
1596 |
|
1597 |
return app
|
1598 |
|
1599 |
+
# Create and launch the interface
|
1600 |
app = create_interface()
|
1601 |
|
|
|
1602 |
if __name__ == "__main__":
|
1603 |
app.launch()
|
1604 |
|