Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -66,6 +66,15 @@ class ModelLoader:
|
|
66 |
|
67 |
def load_model(self, progress: gr.Progress = None) -> Tuple[Optional[AutoModelForCausalLM], Optional[AutoTokenizer]]:
|
68 |
"""Lazy load the model with progress feedback"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
try:
|
70 |
if progress:
|
71 |
progress(0.1, desc="Checking GPU availability...")
|
@@ -117,6 +126,8 @@ class ModelLoader:
|
|
117 |
self.error = f"Model loading failed: {str(e)}"
|
118 |
logging.error(self.error)
|
119 |
return None, None
|
|
|
|
|
120 |
|
121 |
# Initialize model loader
|
122 |
model_loader = ModelLoader()
|
@@ -170,6 +181,13 @@ def validate_file(file_obj) -> None:
|
|
170 |
raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")
|
171 |
|
172 |
# ========== TEXT EXTRACTION FUNCTIONS ==========
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
def extract_text_from_file(file_path: str, file_ext: str) -> str:
|
174 |
text = ""
|
175 |
|
@@ -312,6 +330,8 @@ class TranscriptParser:
|
|
312 |
def parse_transcript(self, text: str) -> Dict:
|
313 |
"""Parse transcript text and return structured data"""
|
314 |
try:
|
|
|
|
|
315 |
# First try the new detailed parser
|
316 |
parsed_data = self._parse_detailed_transcript(text)
|
317 |
if parsed_data:
|
@@ -349,28 +369,29 @@ class TranscriptParser:
|
|
349 |
if yog_match:
|
350 |
parsed_data['student_info']['year_of_graduation'] = yog_match.group(1)
|
351 |
|
352 |
-
# Improved GPA extraction
|
353 |
-
gpa_matches = re.findall(r"(?:
|
354 |
-
if len(gpa_matches) >=
|
355 |
parsed_data['student_info']['unweighted_gpa'] = float(gpa_matches[0])
|
|
|
356 |
parsed_data['student_info']['weighted_gpa'] = float(gpa_matches[1])
|
357 |
|
358 |
# Community service info
|
359 |
-
service_hours_match = re.search(r"
|
360 |
if service_hours_match:
|
361 |
parsed_data['student_info']['community_service_hours'] = int(service_hours_match.group(1))
|
362 |
|
363 |
-
service_date_match = re.search(r"
|
364 |
if service_date_match:
|
365 |
parsed_data['student_info']['community_service_date'] = service_date_match.group(1)
|
366 |
|
367 |
# Credits info
|
368 |
-
credits_match = re.search(r"
|
369 |
if credits_match:
|
370 |
parsed_data['student_info']['total_credits'] = float(credits_match.group(1))
|
371 |
|
372 |
# Virtual grade
|
373 |
-
virtual_grade_match = re.search(r"
|
374 |
if virtual_grade_match:
|
375 |
parsed_data['student_info']['virtual_grade'] = virtual_grade_match.group(1)
|
376 |
|
@@ -379,10 +400,10 @@ class TranscriptParser:
|
|
379 |
for match in req_pattern.finditer(text):
|
380 |
code = match.group(1).strip()
|
381 |
desc = match.group(2).strip()
|
382 |
-
required = float(match.group(3))
|
383 |
-
waived = float(match.group(4))
|
384 |
-
completed = float(match.group(5))
|
385 |
-
percent = float(match.group(6))
|
386 |
parsed_data['requirements'][code] = {
|
387 |
"description": desc,
|
388 |
"required": required,
|
@@ -392,7 +413,7 @@ class TranscriptParser:
|
|
392 |
}
|
393 |
|
394 |
# Extract assessments with more flexible pattern
|
395 |
-
assess_pattern = re.compile(r"Z-
|
396 |
for match in assess_pattern.finditer(text):
|
397 |
name = f"Assessment: {match.group(1).strip()}"
|
398 |
status = match.group(3).strip()
|
@@ -406,22 +427,22 @@ class TranscriptParser:
|
|
406 |
parsed_data['assessments'][z_item] = status
|
407 |
|
408 |
# Extract course history with more robust pattern
|
409 |
-
course_history_section = re.search(r"
|
410 |
if course_history_section:
|
411 |
course_lines = [line.strip() for line in course_history_section.group(1).split('\n') if line.strip()]
|
412 |
for line in course_lines:
|
413 |
parts = [part.strip() for part in line.split('|')]
|
414 |
if len(parts) >= 9:
|
415 |
course = {
|
416 |
-
'requirement': parts[0],
|
417 |
-
'school_year': parts[1],
|
418 |
-
'grade_level': parts[2],
|
419 |
-
'course_code': parts[3],
|
420 |
-
'description': parts[4],
|
421 |
-
'term': parts[5],
|
422 |
-
'district_number': parts[6],
|
423 |
-
'fg': parts[7],
|
424 |
-
'included': parts[8],
|
425 |
'credits': parts[9] if len(parts) > 9 else "0"
|
426 |
}
|
427 |
parsed_data['course_history'].append(course)
|
@@ -435,7 +456,7 @@ class TranscriptParser:
|
|
435 |
def _parse_simplified_transcript(self, text: str) -> Dict:
|
436 |
"""Fallback simplified transcript parser with multiple pattern attempts"""
|
437 |
patterns = [
|
438 |
-
(r'(?:
|
439 |
(r'([A-Z]{2,4}\s?\d{3}[A-Z]?)\s+(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 'line'),
|
440 |
(r'(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 'minimal')
|
441 |
]
|
@@ -444,8 +465,10 @@ class TranscriptParser:
|
|
444 |
try:
|
445 |
if pattern_type == 'table':
|
446 |
# Parse tabular data
|
447 |
-
|
448 |
-
|
|
|
|
|
449 |
elif pattern_type == 'line':
|
450 |
courses = re.findall(pattern, text)
|
451 |
else:
|
@@ -454,14 +477,22 @@ class TranscriptParser:
|
|
454 |
if courses:
|
455 |
parsed_data = {'course_history': []}
|
456 |
for course in courses:
|
457 |
-
|
458 |
-
'
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
return parsed_data
|
464 |
-
except:
|
|
|
465 |
continue
|
466 |
|
467 |
raise ValueError("Could not identify course information in transcript")
|
@@ -469,7 +500,7 @@ class TranscriptParser:
|
|
469 |
# ========== ENHANCED ANALYSIS FUNCTIONS ==========
|
470 |
def analyze_gpa(parsed_data: Dict) -> str:
|
471 |
try:
|
472 |
-
gpa = float(parsed_data['student_info']
|
473 |
if gpa >= 4.5:
|
474 |
return "π Excellent GPA! You're in the top tier of students."
|
475 |
elif gpa >= 3.5:
|
@@ -484,15 +515,15 @@ def analyze_gpa(parsed_data: Dict) -> str:
|
|
484 |
def analyze_graduation_status(parsed_data: Dict) -> str:
|
485 |
try:
|
486 |
total_required = sum(
|
487 |
-
float(req
|
488 |
-
for req in parsed_data
|
489 |
-
if req
|
490 |
)
|
491 |
|
492 |
total_completed = sum(
|
493 |
-
float(req
|
494 |
-
for req in parsed_data
|
495 |
-
if req
|
496 |
)
|
497 |
|
498 |
completion_percentage = (total_completed / total_required) * 100 if total_required > 0 else 0
|
@@ -513,7 +544,7 @@ def generate_advice(parsed_data: Dict) -> str:
|
|
513 |
|
514 |
# GPA advice
|
515 |
try:
|
516 |
-
gpa = float(parsed_data
|
517 |
if gpa < 3.0:
|
518 |
advice.append("π Your GPA could improve. Consider:\n- Seeking tutoring for challenging subjects\n- Meeting with teachers during office hours\n- Developing better study habits")
|
519 |
except (TypeError, ValueError, KeyError, AttributeError):
|
@@ -521,7 +552,7 @@ def generate_advice(parsed_data: Dict) -> str:
|
|
521 |
|
522 |
# Community service advice
|
523 |
try:
|
524 |
-
service_hours = int(parsed_data
|
525 |
if service_hours < 100:
|
526 |
advice.append("π€ Consider more community service:\n- Many colleges value 100+ hours\n- Look for opportunities that align with your interests")
|
527 |
except (TypeError, ValueError, KeyError, AttributeError):
|
@@ -530,19 +561,20 @@ def generate_advice(parsed_data: Dict) -> str:
|
|
530 |
# Missing requirements advice
|
531 |
try:
|
532 |
missing_reqs = [
|
533 |
-
req for code, req in parsed_data
|
534 |
-
if float(req
|
535 |
]
|
536 |
|
537 |
if missing_reqs:
|
538 |
-
req_list = "\n- ".join([f"{code}: {req
|
539 |
advice.append(f"π Focus on completing these requirements:\n- {req_list}")
|
540 |
except (TypeError, ValueError, KeyError, AttributeError):
|
541 |
pass
|
542 |
|
543 |
# Course rigor advice
|
544 |
try:
|
545 |
-
ap_count = sum(1 for course in parsed_data
|
|
|
546 |
if ap_count < 3:
|
547 |
advice.append("π§ Consider taking more challenging courses:\n- AP/IB courses can strengthen college applications\n- Shows academic rigor to admissions officers")
|
548 |
except (TypeError, KeyError, AttributeError):
|
@@ -552,9 +584,10 @@ def generate_advice(parsed_data: Dict) -> str:
|
|
552 |
|
553 |
def generate_college_recommendations(parsed_data: Dict) -> str:
|
554 |
try:
|
555 |
-
gpa = float(parsed_data
|
556 |
-
ap_count = sum(1 for course in parsed_data
|
557 |
-
|
|
|
558 |
|
559 |
recommendations = []
|
560 |
|
@@ -589,8 +622,8 @@ def create_gpa_visualization(parsed_data: Dict):
|
|
589 |
gpa_data = {
|
590 |
"Type": ["Weighted GPA", "Unweighted GPA"],
|
591 |
"Value": [
|
592 |
-
float(parsed_data
|
593 |
-
float(parsed_data
|
594 |
]
|
595 |
}
|
596 |
df = pd.DataFrame(gpa_data)
|
@@ -606,8 +639,8 @@ def create_gpa_visualization(parsed_data: Dict):
|
|
606 |
def create_requirements_visualization(parsed_data: Dict):
|
607 |
try:
|
608 |
req_data = []
|
609 |
-
for code, req in parsed_data
|
610 |
-
if req.get('percent_complete'):
|
611 |
completion = float(req['percent_complete'])
|
612 |
req_data.append({
|
613 |
"Requirement": code,
|
@@ -663,6 +696,8 @@ def parse_transcript(file_obj, progress=gr.Progress()) -> Tuple[str, Optional[Di
|
|
663 |
parser = TranscriptParser()
|
664 |
try:
|
665 |
parsed_data = parser.parse_transcript(text)
|
|
|
|
|
666 |
except Exception as e:
|
667 |
raise ValueError(f"Couldn't parse transcript content. Error: {str(e)}")
|
668 |
|
|
|
66 |
|
67 |
def load_model(self, progress: gr.Progress = None) -> Tuple[Optional[AutoModelForCausalLM], Optional[AutoTokenizer]]:
|
68 |
"""Lazy load the model with progress feedback"""
|
69 |
+
if self.loaded:
|
70 |
+
return self.model, self.tokenizer
|
71 |
+
|
72 |
+
if self.loading:
|
73 |
+
while self.loading:
|
74 |
+
time.sleep(0.1)
|
75 |
+
return self.model, self.tokenizer
|
76 |
+
|
77 |
+
self.loading = True
|
78 |
try:
|
79 |
if progress:
|
80 |
progress(0.1, desc="Checking GPU availability...")
|
|
|
126 |
self.error = f"Model loading failed: {str(e)}"
|
127 |
logging.error(self.error)
|
128 |
return None, None
|
129 |
+
finally:
|
130 |
+
self.loading = False
|
131 |
|
132 |
# Initialize model loader
|
133 |
model_loader = ModelLoader()
|
|
|
181 |
raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")
|
182 |
|
183 |
# ========== TEXT EXTRACTION FUNCTIONS ==========
|
184 |
+
def preprocess_text(text: str) -> str:
|
185 |
+
"""Normalize text for more reliable parsing"""
|
186 |
+
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
|
187 |
+
text = text.replace('|', ' ') # Handle common OCR errors
|
188 |
+
text = text.upper() # Standardize case for certain fields
|
189 |
+
return text
|
190 |
+
|
191 |
def extract_text_from_file(file_path: str, file_ext: str) -> str:
|
192 |
text = ""
|
193 |
|
|
|
330 |
def parse_transcript(self, text: str) -> Dict:
|
331 |
"""Parse transcript text and return structured data"""
|
332 |
try:
|
333 |
+
text = preprocess_text(text)
|
334 |
+
|
335 |
# First try the new detailed parser
|
336 |
parsed_data = self._parse_detailed_transcript(text)
|
337 |
if parsed_data:
|
|
|
369 |
if yog_match:
|
370 |
parsed_data['student_info']['year_of_graduation'] = yog_match.group(1)
|
371 |
|
372 |
+
# Improved GPA extraction with more flexible patterns
|
373 |
+
gpa_matches = re.findall(r"(?:UNWEIGHTED|WEIGHTED)\s*GPA\s*([\d.]+)", text, re.IGNORECASE)
|
374 |
+
if len(gpa_matches) >= 1:
|
375 |
parsed_data['student_info']['unweighted_gpa'] = float(gpa_matches[0])
|
376 |
+
if len(gpa_matches) >= 2:
|
377 |
parsed_data['student_info']['weighted_gpa'] = float(gpa_matches[1])
|
378 |
|
379 |
# Community service info
|
380 |
+
service_hours_match = re.search(r"COMM\s*SERV\s*HOURS\s*(\d+)", text, re.IGNORECASE)
|
381 |
if service_hours_match:
|
382 |
parsed_data['student_info']['community_service_hours'] = int(service_hours_match.group(1))
|
383 |
|
384 |
+
service_date_match = re.search(r"COMM\s*SERV\s*DATE\s*(\d{2}/\d{2}/\d{4})", text, re.IGNORECASE)
|
385 |
if service_date_match:
|
386 |
parsed_data['student_info']['community_service_date'] = service_date_match.group(1)
|
387 |
|
388 |
# Credits info
|
389 |
+
credits_match = re.search(r"TOTAL\s*CREDITS\s*EARNED\s*([\d.]+)", text, re.IGNORECASE)
|
390 |
if credits_match:
|
391 |
parsed_data['student_info']['total_credits'] = float(credits_match.group(1))
|
392 |
|
393 |
# Virtual grade
|
394 |
+
virtual_grade_match = re.search(r"VIRTUAL\s*GRADE\s*(\w+)", text, re.IGNORECASE)
|
395 |
if virtual_grade_match:
|
396 |
parsed_data['student_info']['virtual_grade'] = virtual_grade_match.group(1)
|
397 |
|
|
|
400 |
for match in req_pattern.finditer(text):
|
401 |
code = match.group(1).strip()
|
402 |
desc = match.group(2).strip()
|
403 |
+
required = float(match.group(3)) if match.group(3) else 0.0
|
404 |
+
waived = float(match.group(4)) if match.group(4) else 0.0
|
405 |
+
completed = float(match.group(5)) if match.group(5) else 0.0
|
406 |
+
percent = float(match.group(6)) if match.group(6) else 0.0
|
407 |
parsed_data['requirements'][code] = {
|
408 |
"description": desc,
|
409 |
"required": required,
|
|
|
413 |
}
|
414 |
|
415 |
# Extract assessments with more flexible pattern
|
416 |
+
assess_pattern = re.compile(r"Z-ASSESSMENT:\s*(.*?)\s*\|\s*(.*?)\s*\|\s*(\w+)\s*\|\s*(\d+)\s*%", re.IGNORECASE)
|
417 |
for match in assess_pattern.finditer(text):
|
418 |
name = f"Assessment: {match.group(1).strip()}"
|
419 |
status = match.group(3).strip()
|
|
|
427 |
parsed_data['assessments'][z_item] = status
|
428 |
|
429 |
# Extract course history with more robust pattern
|
430 |
+
course_history_section = re.search(r"REQUIREMENT.*?SCHOOL YEAR.*?GRADELV1.*?CRSNUM.*?DESCRIPTION.*?TERM.*?DSTNUMBER.*?FG.*?INCL.*?CREDITS(.*?)(?:\n\s*\n|$)", text, re.DOTALL | re.IGNORECASE)
|
431 |
if course_history_section:
|
432 |
course_lines = [line.strip() for line in course_history_section.group(1).split('\n') if line.strip()]
|
433 |
for line in course_lines:
|
434 |
parts = [part.strip() for part in line.split('|')]
|
435 |
if len(parts) >= 9:
|
436 |
course = {
|
437 |
+
'requirement': parts[0] if len(parts) > 0 else "",
|
438 |
+
'school_year': parts[1] if len(parts) > 1 else "",
|
439 |
+
'grade_level': parts[2] if len(parts) > 2 else "",
|
440 |
+
'course_code': parts[3] if len(parts) > 3 else "",
|
441 |
+
'description': parts[4] if len(parts) > 4 else "",
|
442 |
+
'term': parts[5] if len(parts) > 5 else "",
|
443 |
+
'district_number': parts[6] if len(parts) > 6 else "",
|
444 |
+
'fg': parts[7] if len(parts) > 7 else "",
|
445 |
+
'included': parts[8] if len(parts) > 8 else "",
|
446 |
'credits': parts[9] if len(parts) > 9 else "0"
|
447 |
}
|
448 |
parsed_data['course_history'].append(course)
|
|
|
456 |
def _parse_simplified_transcript(self, text: str) -> Dict:
|
457 |
"""Fallback simplified transcript parser with multiple pattern attempts"""
|
458 |
patterns = [
|
459 |
+
(r'(?:COURSE|SUBJECT)\s*CODE.*?GRADE.*?CREDITS(.*?)(?:\n\s*\n|\Z)', 'table'),
|
460 |
(r'([A-Z]{2,4}\s?\d{3}[A-Z]?)\s+(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 'line'),
|
461 |
(r'(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)', 'minimal')
|
462 |
]
|
|
|
465 |
try:
|
466 |
if pattern_type == 'table':
|
467 |
# Parse tabular data
|
468 |
+
table_section = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
469 |
+
if table_section:
|
470 |
+
courses = re.findall(r'([A-Z]{2,4}\s?\d{3}[A-Z]?)\s+(.*?)\s+([A-F][+-]?)\s+(\d+\.?\d*)',
|
471 |
+
table_section.group(1))
|
472 |
elif pattern_type == 'line':
|
473 |
courses = re.findall(pattern, text)
|
474 |
else:
|
|
|
477 |
if courses:
|
478 |
parsed_data = {'course_history': []}
|
479 |
for course in courses:
|
480 |
+
if len(course) >= 4:
|
481 |
+
parsed_data['course_history'].append({
|
482 |
+
'course_code': course[0].strip(),
|
483 |
+
'description': course[1].strip(),
|
484 |
+
'grade': course[2].strip(),
|
485 |
+
'credits': float(course[3]) if course[3] else 0.0
|
486 |
+
})
|
487 |
+
elif len(course) == 3:
|
488 |
+
parsed_data['course_history'].append({
|
489 |
+
'description': course[0].strip(),
|
490 |
+
'grade': course[1].strip(),
|
491 |
+
'credits': float(course[2]) if course[2] else 0.0
|
492 |
+
})
|
493 |
return parsed_data
|
494 |
+
except Exception as e:
|
495 |
+
logging.warning(f"Pattern {pattern} failed: {str(e)}")
|
496 |
continue
|
497 |
|
498 |
raise ValueError("Could not identify course information in transcript")
|
|
|
500 |
# ========== ENHANCED ANALYSIS FUNCTIONS ==========
|
501 |
def analyze_gpa(parsed_data: Dict) -> str:
|
502 |
try:
|
503 |
+
gpa = float(parsed_data['student_info'].get('weighted_gpa', 0))
|
504 |
if gpa >= 4.5:
|
505 |
return "π Excellent GPA! You're in the top tier of students."
|
506 |
elif gpa >= 3.5:
|
|
|
515 |
def analyze_graduation_status(parsed_data: Dict) -> str:
|
516 |
try:
|
517 |
total_required = sum(
|
518 |
+
float(req.get('required', 0))
|
519 |
+
for req in parsed_data.get('requirements', {}).values()
|
520 |
+
if req and str(req.get('required', '0')).replace('.', '').isdigit()
|
521 |
)
|
522 |
|
523 |
total_completed = sum(
|
524 |
+
float(req.get('completed', 0))
|
525 |
+
for req in parsed_data.get('requirements', {}).values()
|
526 |
+
if req and str(req.get('completed', '0')).replace('.', '').isdigit()
|
527 |
)
|
528 |
|
529 |
completion_percentage = (total_completed / total_required) * 100 if total_required > 0 else 0
|
|
|
544 |
|
545 |
# GPA advice
|
546 |
try:
|
547 |
+
gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0))
|
548 |
if gpa < 3.0:
|
549 |
advice.append("π Your GPA could improve. Consider:\n- Seeking tutoring for challenging subjects\n- Meeting with teachers during office hours\n- Developing better study habits")
|
550 |
except (TypeError, ValueError, KeyError, AttributeError):
|
|
|
552 |
|
553 |
# Community service advice
|
554 |
try:
|
555 |
+
service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0))
|
556 |
if service_hours < 100:
|
557 |
advice.append("π€ Consider more community service:\n- Many colleges value 100+ hours\n- Look for opportunities that align with your interests")
|
558 |
except (TypeError, ValueError, KeyError, AttributeError):
|
|
|
561 |
# Missing requirements advice
|
562 |
try:
|
563 |
missing_reqs = [
|
564 |
+
req for code, req in parsed_data.get('requirements', {}).items()
|
565 |
+
if req and float(req.get('percent_complete', 0)) < 100 and not code.startswith("Z-Assessment")
|
566 |
]
|
567 |
|
568 |
if missing_reqs:
|
569 |
+
req_list = "\n- ".join([f"{code}: {req.get('description', '')}" for code, req in missing_reqs])
|
570 |
advice.append(f"π Focus on completing these requirements:\n- {req_list}")
|
571 |
except (TypeError, ValueError, KeyError, AttributeError):
|
572 |
pass
|
573 |
|
574 |
# Course rigor advice
|
575 |
try:
|
576 |
+
ap_count = sum(1 for course in parsed_data.get('course_history', [])
|
577 |
+
if course and "ADVANCED PLACEMENT" in course.get('description', '').upper())
|
578 |
if ap_count < 3:
|
579 |
advice.append("π§ Consider taking more challenging courses:\n- AP/IB courses can strengthen college applications\n- Shows academic rigor to admissions officers")
|
580 |
except (TypeError, KeyError, AttributeError):
|
|
|
584 |
|
585 |
def generate_college_recommendations(parsed_data: Dict) -> str:
|
586 |
try:
|
587 |
+
gpa = float(parsed_data.get('student_info', {}).get('weighted_gpa', 0))
|
588 |
+
ap_count = sum(1 for course in parsed_data.get('course_history', [])
|
589 |
+
if course and "ADVANCED PLACEMENT" in course.get('description', '').upper())
|
590 |
+
service_hours = int(parsed_data.get('student_info', {}).get('community_service_hours', 0))
|
591 |
|
592 |
recommendations = []
|
593 |
|
|
|
622 |
gpa_data = {
|
623 |
"Type": ["Weighted GPA", "Unweighted GPA"],
|
624 |
"Value": [
|
625 |
+
float(parsed_data.get('student_info', {}).get('weighted_gpa', 0)),
|
626 |
+
float(parsed_data.get('student_info', {}).get('unweighted_gpa', 0))
|
627 |
]
|
628 |
}
|
629 |
df = pd.DataFrame(gpa_data)
|
|
|
639 |
def create_requirements_visualization(parsed_data: Dict):
|
640 |
try:
|
641 |
req_data = []
|
642 |
+
for code, req in parsed_data.get('requirements', {}).items():
|
643 |
+
if req and req.get('percent_complete'):
|
644 |
completion = float(req['percent_complete'])
|
645 |
req_data.append({
|
646 |
"Requirement": code,
|
|
|
696 |
parser = TranscriptParser()
|
697 |
try:
|
698 |
parsed_data = parser.parse_transcript(text)
|
699 |
+
if not parsed_data:
|
700 |
+
raise ValueError("No data could be parsed from the transcript.")
|
701 |
except Exception as e:
|
702 |
raise ValueError(f"Couldn't parse transcript content. Error: {str(e)}")
|
703 |
|