File size: 11,729 Bytes
6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 1fde903 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 1fde903 017294a 1fde903 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 017294a 6c19f60 be02f5b 73b4d62 017294a 73b4d62 6c19f60 017294a 7b95377 6c19f60 7c660c3 0937341 7c660c3 f7abd62 0937341 7c660c3 27acc6d be02f5b 7c660c3 6c19f60 27acc6d 017294a 6c19f60 27acc6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
#!/usr/bin/env python
# coding: utf-8
# In[23]:
# In[24]:
# import subprocess
# try:
# result = subprocess.run(["ffmpeg", "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# if result.returncode == 0:
# print("FFmpeg version:")
# print(result.stdout.split('\n')[0]) # Print the first line of the version output
# else:
# print("Error checking FFmpeg version:")
# print(result.stderr)
# except FileNotFoundError:
# print("FFmpeg is not installed or not found in PATH.")
# In[25]:
from urllib.parse import urlparse, parse_qs
import gradio as gr
import requests
from bs4 import BeautifulSoup
import openai
from openai import OpenAI
import speech_recognition as sr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled
from youtube_transcript_api.formatters import TextFormatter
from urllib.parse import urlparse, parse_qs
import json
import os
import yaml
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
# In[26]:
openai_api_key = os.environ["OPENAI_API_KEY"]
# In[27]:
# transcription = pipeline(
# "automatic-speech-recognition",
# model="openai/whisper-medium")
# result = transcription("2024_dairy.wav", return_timestamps=True)
# print(result["text"])
# In[28]:
def is_youtube_url(url):
try:
# Parse the URL
parsed_url = urlparse(url)
# Check if the domain is YouTube
if parsed_url.netloc in ["www.youtube.com", "youtube.com", "m.youtube.com", "youtu.be"]:
# For standard YouTube URLs, ensure it has a 'v' parameter
if "youtube.com" in parsed_url.netloc:
return "v" in parse_qs(parsed_url.query)
# For shortened YouTube URLs (youtu.be), check the path
elif "youtu.be" in parsed_url.netloc:
return len(parsed_url.path.strip("/")) > 0
return False
except Exception as e:
return False
def get_youtube_transcript(youtube_url):
try:
# Parse the video ID from the URL
parsed_url = urlparse(youtube_url)
video_id = parse_qs(parsed_url.query).get("v")
if not video_id:
return "Invalid YouTube URL. Please provide a valid URL."
video_id = video_id[0] # Extract the video ID
# Fetch the transcript
transcript = YouTubeTranscriptApi.get_transcript(video_id, proxies={"https": "http://localhost:8080"})
# Format the transcript as plain text
formatter = TextFormatter()
formatted_transcript = formatter.format_transcript(transcript)
return formatted_transcript
except Exception as e:
return f"An error occurred: {str(e)}"
# In[29]:
def check_subtitles(video_id):
try:
transcripts = YouTubeTranscriptApi.list_transcripts(video_id)
print(f"Available transcripts: {transcripts}")
return True
except TranscriptsDisabled:
print("Subtitles are disabled for this video.")
return False
except Exception as e:
print(f"An unexpected error occurred: {e}")
return False
# Test
video_id = "Um017R5Kr3A" # Replace with your YouTube video ID
check_subtitles(video_id)
# In[30]:
# 设置 OpenAI API
client = OpenAI(api_key=openai_api_key)
### Curify Digest ###
# Function to fetch webpage, render it, and generate summary/perspectives
def process_webpage(url):
try:
if is_youtube_url(url):
rendered_content = get_youtube_transcript(url)
else:
# Fetch and parse webpage
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
html_content = str(soup.prettify())
for script in soup(["script", "style"]):
script.decompose() # Remove script and style tags
rendered_content = soup.get_text(separator="\n").strip().replace("\n\n", "")
text_content = rendered_content[:2000] # Limit content length for processing
# Generate summary and perspectives
summary_prompt = f"Summarize the following content:\n{text_content}\n Please use the language of the originial content"
perspectives_prompt = f"Generate a reflective review for the following content:\n{text_content}\n Please output the perspectives in no more than 5 very concise bullet points. Please use the language of the originial content"
summary_response = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": summary_prompt}],
max_tokens=500,
)
perspectives_response = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": perspectives_prompt}],
max_tokens=500,
)
summary = summary_response.choices[0].message.content.strip()
perspectives = perspectives_response.choices[0].message.content.strip()
return rendered_content, summary, perspectives
except Exception as e:
return f"Error fetching or processing content: {str(e)}", "", ""
# In[31]:
# Function for chatbot interaction
def chat_with_ai(chat_history, user_input, content):
try:
messages = [{"role": "system", "content": "You are a helpful assistant."}]
# Add chat history
for user, bot in chat_history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": bot})
# Add user input with webpage content
messages.append({"role": "user", "content": f"Based on this content: {content}\n\n{user_input}"})
# Call OpenAI API
ai_response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
max_tokens=300,
)
reply = ai_response.choices[0].message.content.strip()
chat_history.append((user_input, reply))
return chat_history
except Exception as e:
return chat_history + [(user_input, f"Error: {str(e)}")]
# In[32]:
def generate_reflection(chat_history):
"""
Generate a reflection based on the chat history.
Args:
chat_history (list of tuples): List of (user_input, ai_reply) pairs.
Returns:
str: A reflective summary generated by AI.
"""
try:
messages = [{"role": "system", "content": "You are a professional content summarizer. Generate thoughtful reflections."}]
# Add conversation to messages
for user, bot in chat_history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": bot})
# Prompt for reflection
messages.append({"role": "user", "content": "Please provide a concise, reflective summary of this conversation."})
# Call OpenAI API
ai_response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
max_tokens=200,
)
reflection = ai_response.choices[0].message.content.strip()
return reflection
except Exception as e:
return f"Error generating reflection: {str(e)}"
# In[33]:
import requests
def post_to_linkedin(access_token, reflection, visibility="PUBLIC"):
"""
Post a reflection to LinkedIn.
Args:
access_token (str): LinkedIn API access token.
reflection (str): The content to post.
visibility (str): Visibility setting ("PUBLIC" or "CONNECTIONS"). Defaults to "PUBLIC".
Returns:
str: Confirmation or error message.
"""
try:
url = "https://api.linkedin.com/v2/ugcPosts"
headers = {
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/json",
}
your_linkedin_person_id = 'jay'
payload = {
"author": f"urn:li:person:{your_linkedin_person_id}", # Replace with your LinkedIn person URN
"lifecycleState": "PUBLISHED",
"visibility": {"com.linkedin.ugc.MemberNetworkVisibility": visibility},
"specificContent": {
"com.linkedin.ugc.ShareContent": {
"shareCommentary": {
"text": reflection
},
"shareMediaCategory": "NONE"
}
}
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 201:
return "Reflection successfully posted to LinkedIn!"
else:
return f"Failed to post to LinkedIn. Error: {response.json()}"
except Exception as e:
return f"Error posting to LinkedIn: {str(e)}"
# JavaScript for copying text to the clipboard
copy_to_clipboard_js = """
function copyToClipboard(text) {
navigator.clipboard.writeText(text).then(() => {
alert("Text copied to clipboard!");
}).catch(err => {
alert("Failed to copy text: " + err);
});
}
"""
# In[36]:
### Gradio Demo ###
with gr.Blocks() as demo:
gr.Markdown("## Curify Digest: Consume and interact with content")
with gr.Row():
# Column 1: Webpage rendering
with gr.Column():
gr.Markdown("## Render Webpage")
url_input = gr.Textbox(label="Enter URL")
# Shared Button: Fetch content, show webpage, and summary/perspectives
fetch_btn = gr.Button("Fetch and Process Webpage")
text_output = gr.Textbox(label="Webpage Content", lines=7)
summary_output = gr.Textbox(label="Summary", lines=5)
perspectives_output = gr.Textbox(label="Perspectives", lines=5)
# Column 2: Interactive chatbot
with gr.Column():
gr.Markdown("## Interactive Chatbot")
chatbot_history_gr = gr.Chatbot(label="Chat History")
user_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
chatbot_btn = gr.Button("Chat")
# Column 3: Generate reflections
with gr.Column():
reflection_btn = gr.Button("Generate reflection")
reflection_output = gr.Textbox(label="Reflections", lines=5)
# Custom HTML and JS for copy-to-clipboard
custom_js = """
<script>
function copyToClipboard() {
const textbox = document.querySelector("textarea[aria-label='Reflections']");
if (textbox) {
navigator.clipboard.writeText(textbox.value).then(() => {
alert("Text copied to clipboard!");
}).catch(err => {
alert("Failed to copy text: " + err);
});
}
}
</script>
<button onclick="copyToClipboard()">Copy to clipboard</button>
"""
gr.HTML(custom_js)
fetch_btn.click(
process_webpage,
inputs=url_input,
outputs=[text_output, summary_output, perspectives_output],
)
chatbot_btn.click(
chat_with_ai,
inputs=[chatbot_history_gr, user_input, text_output],
outputs=chatbot_history_gr,
)
reflection_btn.click(
generate_reflection,
inputs=chatbot_history_gr,
outputs=reflection_output,
)
demo.launch(share=True)
# In[ ]: |