Update app.py
Browse files
app.py
CHANGED
@@ -1,1281 +1,401 @@
|
|
1 |
-
from fastapi import FastAPI, Request
|
2 |
-
import gradio as gr
|
3 |
-
import uvicorn
|
4 |
-
|
5 |
-
# Initialize FastAPI app
|
6 |
-
app = FastAPI()
|
7 |
-
|
8 |
-
# FastAPI route to handle WhatsApp webhook
|
9 |
-
@app.post("/whatsapp-webhook")
|
10 |
-
async def whatsapp_webhook(request: Request):
|
11 |
-
data = await request.json() # Parse incoming JSON data
|
12 |
-
print(f"Received data: {data}") # Log incoming data for debugging
|
13 |
-
return {"status": "success", "received_data": data}
|
14 |
-
|
15 |
-
# Create a simple Gradio Blocks interface
|
16 |
-
def greet(name):
|
17 |
-
return f"Hello, {name}!"
|
18 |
-
|
19 |
-
with gr.Blocks() as demo:
|
20 |
-
gr.Markdown("### Greeting App")
|
21 |
-
name_input = gr.Textbox(placeholder="Enter your name")
|
22 |
-
greet_button = gr.Button("Greet")
|
23 |
-
output_text = gr.Textbox(label="Greeting")
|
24 |
-
|
25 |
-
greet_button.click(fn=greet, inputs=name_input, outputs=output_text)
|
26 |
-
|
27 |
-
# Mount the Gradio app at "/gradio"
|
28 |
-
gr.mount_gradio_app(app, demo, path="/gradio")
|
29 |
-
|
30 |
-
# Run the FastAPI app with Uvicorn
|
31 |
-
if __name__ == "__main__":
|
32 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
33 |
-
|
34 |
-
# from fastapi import FastAPI, Request
|
35 |
-
# import uvicorn
|
36 |
-
|
37 |
-
# # Initialize FastAPI app
|
38 |
-
# app = FastAPI()
|
39 |
-
|
40 |
-
# # FastAPI route to handle WhatsApp webhook
|
41 |
-
# @app.post("/whatsapp-webhook")
|
42 |
-
# async def whatsapp_webhook(request: Request):
|
43 |
-
# data = await request.json() # Parse incoming JSON data
|
44 |
-
# print(f"Received data: {data}") # Log incoming data for debugging
|
45 |
-
# return {"status": "success", "received_data": data}
|
46 |
-
|
47 |
-
# # Run the FastAPI app with Uvicorn
|
48 |
-
# if __name__ == "__main__":
|
49 |
-
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
50 |
-
|
51 |
#!/usr/bin/env python
|
52 |
# coding: utf-8
|
53 |
|
|
|
54 |
|
55 |
-
# In[2]:
|
56 |
-
|
57 |
-
|
58 |
-
#pip install evernote-sdk-python3
|
59 |
-
# import evernote.edam.notestore.NoteStore as NoteStore
|
60 |
-
# import evernote.edam.type.ttypes as Types
|
61 |
-
# from evernote.api.client import EvernoteClient
|
62 |
|
|
|
63 |
|
64 |
-
# In[3]:
|
65 |
|
|
|
66 |
|
67 |
-
#
|
68 |
-
#
|
69 |
-
#
|
70 |
-
#
|
71 |
-
|
72 |
-
#
|
73 |
-
|
74 |
-
#
|
75 |
-
#
|
76 |
-
#
|
77 |
-
# from openai import OpenAI
|
78 |
-
|
79 |
-
# import gradio as gr
|
80 |
-
|
81 |
-
# import json
|
82 |
-
|
83 |
-
# import sqlite3
|
84 |
-
# import uuid
|
85 |
-
# import socket
|
86 |
-
# import difflib
|
87 |
-
# import time
|
88 |
-
# import shutil
|
89 |
-
# import requests
|
90 |
-
# import re
|
91 |
-
|
92 |
-
# import json
|
93 |
-
# import markdown
|
94 |
-
# from fpdf import FPDF
|
95 |
-
# import hashlib
|
96 |
-
|
97 |
-
# from transformers import pipeline
|
98 |
-
# from transformers.pipelines.audio_utils import ffmpeg_read
|
99 |
-
|
100 |
-
# from todoist_api_python.api import TodoistAPI
|
101 |
|
102 |
-
# # from flask import Flask, request, jsonify
|
103 |
-
# from twilio.rest import Client
|
104 |
|
105 |
-
#
|
106 |
-
# import uvicorn
|
107 |
-
# import fastapi
|
108 |
-
# from fastapi import FastAPI, Request, HTTPException
|
109 |
-
# from fastapi.responses import HTMLResponse, JSONResponse, RedirectResponse
|
110 |
-
# from fastapi.staticfiles import StaticFiles
|
111 |
-
# from pathlib import Path
|
112 |
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
# from google.oauth2 import service_account
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
# from reportlab.pdfbase import pdfmetrics
|
125 |
-
# from reportlab.lib import colors
|
126 |
-
# from reportlab.pdfbase.ttfonts import TTFont
|
127 |
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
|
135 |
-
#
|
136 |
|
137 |
-
|
138 |
-
# openai_api_key = os.environ["OPENAI_API_KEY"]
|
139 |
-
# # Access the API keys and other configuration data
|
140 |
-
# todoist_api_key = os.environ["TODOIST_API_KEY"]
|
141 |
|
142 |
-
#
|
143 |
|
144 |
-
# account_sid = os.environ["TWILLO_ACCOUNT_SID"]
|
145 |
-
# auth_token = os.environ["TWILLO_AUTH_TOKEN"]
|
146 |
-
# twilio_phone_number = os.environ["TWILLO_PHONE_NUMBER"]
|
147 |
|
148 |
-
#
|
149 |
-
#
|
|
|
|
|
|
|
150 |
|
151 |
-
# # Set the GOOGLE_APPLICATION_CREDENTIALS environment variable
|
152 |
|
153 |
-
#
|
154 |
-
# def load_reasoning_json(filepath):
|
155 |
-
# """Load JSON file and return the dictionary."""
|
156 |
-
# with open(filepath, "r") as file:
|
157 |
-
# data = json.load(file)
|
158 |
-
# return data
|
159 |
-
|
160 |
-
# # Load Action Map
|
161 |
-
# def load_action_map(filepath):
|
162 |
-
# """Load action map JSON file and map strings to actual function objects."""
|
163 |
-
# with open(filepath, "r") as file:
|
164 |
-
# action_map_raw = json.load(file)
|
165 |
-
# # Map string names to actual functions using globals()
|
166 |
-
# return {action: globals()[func_name] for action, func_name in action_map_raw.items()}
|
167 |
-
|
168 |
-
|
169 |
-
# # In[5]:
|
170 |
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
#
|
175 |
-
|
176 |
-
# print(f"Finding reference for topic: {task_topic}")
|
177 |
-
# return f"Reference found for topic: {task_topic}"
|
178 |
-
|
179 |
-
# def generate_summary(reference):
|
180 |
-
# """Generates a summary of the reference."""
|
181 |
-
# print(f"Generating summary for reference: {reference}")
|
182 |
-
# return f"Summary of {reference}"
|
183 |
-
|
184 |
-
# def suggest_relevance(summary):
|
185 |
-
# """Suggests how the summary relates to the project."""
|
186 |
-
# print(f"Suggesting relevance of summary: {summary}")
|
187 |
-
# return f"Relevance of {summary} suggested"
|
188 |
-
|
189 |
-
# def tool_research(task_topic):
|
190 |
-
# """Performs tool research and returns analysis."""
|
191 |
-
# print("Performing tool research")
|
192 |
-
# return "Tool analysis data"
|
193 |
-
|
194 |
-
# def generate_comparison_table(tool_analysis):
|
195 |
-
# """Generates a comparison table for a competitive tool."""
|
196 |
-
# print(f"Generating comparison table for analysis: {tool_analysis}")
|
197 |
-
# return f"Comparison table for {tool_analysis}"
|
198 |
-
|
199 |
-
# def generate_integration_memo(tool_analysis):
|
200 |
-
# """Generates an integration memo for a tool."""
|
201 |
-
# print(f"Generating integration memo for analysis: {tool_analysis}")
|
202 |
-
# return f"Integration memo for {tool_analysis}"
|
203 |
-
|
204 |
-
# def analyze_issue(task_topic):
|
205 |
-
# """Analyzes an issue and returns the analysis."""
|
206 |
-
# print("Analyzing issue")
|
207 |
-
# return "Issue analysis data"
|
208 |
-
|
209 |
-
# def generate_issue_memo(issue_analysis):
|
210 |
-
# """Generates an issue memo based on the analysis."""
|
211 |
-
# print(f"Generating issue memo for analysis: {issue_analysis}")
|
212 |
-
# return f"Issue memo for {issue_analysis}"
|
213 |
-
|
214 |
-
# def list_ideas(task_topic):
|
215 |
-
# """Lists potential ideas for brainstorming."""
|
216 |
-
# print("Listing ideas")
|
217 |
-
# return ["Idea 1", "Idea 2", "Idea 3"]
|
218 |
-
|
219 |
-
# def construct_matrix(ideas):
|
220 |
-
# """Constructs a matrix (e.g., feasibility or impact/effort) for the ideas."""
|
221 |
-
# print(f"Constructing matrix for ideas: {ideas}")
|
222 |
-
# return {"Idea 1": "High Impact/Low Effort", "Idea 2": "Low Impact/High Effort", "Idea 3": "High Impact/High Effort"}
|
223 |
-
|
224 |
-
# def prioritize_ideas(matrix):
|
225 |
-
# """Prioritizes ideas based on the matrix."""
|
226 |
-
# print(f"Prioritizing ideas based on matrix: {matrix}")
|
227 |
-
# return ["Idea 3", "Idea 1", "Idea 2"]
|
228 |
-
|
229 |
-
# def setup_action_plan(prioritized_ideas):
|
230 |
-
# """Sets up an action plan based on the prioritized ideas."""
|
231 |
-
# print(f"Setting up action plan for ideas: {prioritized_ideas}")
|
232 |
-
# return f"Action plan created for {prioritized_ideas}"
|
233 |
-
|
234 |
-
# def unsupported_task(task_topic):
|
235 |
-
# """Handles unsupported tasks."""
|
236 |
-
# print("Task not supported")
|
237 |
-
# return "Unsupported task"
|
238 |
-
|
239 |
-
|
240 |
-
# # In[6]:
|
241 |
-
|
242 |
-
|
243 |
-
# todoist_api = TodoistAPI(todoist_api_key)
|
244 |
-
|
245 |
-
# # Fetch recent Todoist task
|
246 |
-
# def fetch_todoist_task():
|
247 |
-
# try:
|
248 |
-
# tasks = todoist_api.get_tasks()
|
249 |
-
# if tasks:
|
250 |
-
# recent_task = tasks[0] # Fetch the most recent task
|
251 |
-
# return f"Recent Task: {recent_task.content}"
|
252 |
-
# return "No tasks found in Todoist."
|
253 |
-
# except Exception as e:
|
254 |
-
# return f"Error fetching tasks: {str(e)}"
|
255 |
-
|
256 |
-
# def add_to_todoist(task_topic, todoist_priority = 3):
|
257 |
-
# try:
|
258 |
-
# # Create a task in Todoist using the Todoist API
|
259 |
-
# # Assuming you have a function `todoist_api.add_task()` that handles the API request
|
260 |
-
# todoist_api.add_task(
|
261 |
-
# content=task_topic,
|
262 |
-
# priority=todoist_priority
|
263 |
-
# )
|
264 |
-
# msg = f"Task added: {task_topic} with priority {todoist_priority}"
|
265 |
-
# logger.debug(msg)
|
266 |
-
|
267 |
-
# return msg
|
268 |
-
# except Exception as e:
|
269 |
-
# # Return an error message if something goes wrong
|
270 |
-
# return f"An error occurred: {e}"
|
271 |
-
|
272 |
-
# # def save_todo(reasoning_steps):
|
273 |
-
# # """
|
274 |
-
# # Save reasoning steps to Todoist as tasks.
|
275 |
-
|
276 |
-
# # Args:
|
277 |
-
# # reasoning_steps (list of dict): A list of steps with "step" and "priority" keys.
|
278 |
-
# # """
|
279 |
-
# # try:
|
280 |
-
# # # Validate that reasoning_steps is a list
|
281 |
-
# # if not isinstance(reasoning_steps, list):
|
282 |
-
# # raise ValueError("The input reasoning_steps must be a list.")
|
283 |
-
|
284 |
-
# # # Iterate over the reasoning steps
|
285 |
-
# # for step in reasoning_steps:
|
286 |
-
# # # Ensure each step is a dictionary and contains required keys
|
287 |
-
# # if not isinstance(step, dict) or "step" not in step or "priority" not in step:
|
288 |
-
# # logger.error(f"Invalid step data: {step}, skipping.")
|
289 |
-
# # continue
|
290 |
-
|
291 |
-
# # task_content = step["step"]
|
292 |
-
# # priority_level = step["priority"]
|
293 |
-
|
294 |
-
# # # Map priority to Todoist's priority levels (1 - low, 4 - high)
|
295 |
-
# # priority_mapping = {"Low": 1, "Medium": 2, "High": 4}
|
296 |
-
# # todoist_priority = priority_mapping.get(priority_level, 1) # Default to low if not found
|
297 |
-
|
298 |
-
# # # Create a task in Todoist using the Todoist API
|
299 |
-
# # # Assuming you have a function `todoist_api.add_task()` that handles the API request
|
300 |
-
# # todoist_api.add_task(
|
301 |
-
# # content=task_content,
|
302 |
-
# # priority=todoist_priority
|
303 |
-
# # )
|
304 |
-
|
305 |
-
# # logger.debug(f"Task added: {task_content} with priority {priority_level}")
|
306 |
-
|
307 |
-
# # return "All tasks processed."
|
308 |
-
# # except Exception as e:
|
309 |
-
# # # Return an error message if something goes wrong
|
310 |
-
# # return f"An error occurred: {e}"
|
311 |
-
|
312 |
-
|
313 |
-
# # In[7]:
|
314 |
-
|
315 |
-
|
316 |
-
# # evernote_client = EvernoteClient(token=EVERNOTE_API_TOKEN, sandbox=False)
|
317 |
-
# # note_store = evernote_client.get_note_store()
|
318 |
-
|
319 |
-
# # def add_to_evernote(task_topic, notebook_title="Inspirations"):
|
320 |
-
# # """
|
321 |
-
# # Add a task topic to the 'Inspirations' notebook in Evernote. If the notebook doesn't exist, create it.
|
322 |
-
|
323 |
-
# # Args:
|
324 |
-
# # task_topic (str): The content of the task to be added.
|
325 |
-
# # notebook_title (str): The title of the Evernote notebook. Default is 'Inspirations'.
|
326 |
-
# # """
|
327 |
-
# # try:
|
328 |
-
# # # Check if the notebook exists
|
329 |
-
# # notebooks = note_store.listNotebooks()
|
330 |
-
# # notebook = next((nb for nb in notebooks if nb.name == notebook_title), None)
|
331 |
-
|
332 |
-
# # # If the notebook doesn't exist, create it
|
333 |
-
# # if not notebook:
|
334 |
-
# # notebook = Types.Notebook()
|
335 |
-
# # notebook.name = notebook_title
|
336 |
-
# # notebook = note_store.createNotebook(notebook)
|
337 |
-
|
338 |
-
# # # Search for an existing note with the same title
|
339 |
-
# # filter = NoteStore.NoteFilter()
|
340 |
-
# # filter.notebookGuid = notebook.guid
|
341 |
-
# # filter.words = notebook_title
|
342 |
-
# # notes_metadata_result = note_store.findNotesMetadata(filter, 0, 1, NoteStore.NotesMetadataResultSpec(includeTitle=True))
|
343 |
-
|
344 |
-
# # # If a note with the title exists, append to it; otherwise, create a new note
|
345 |
-
# # if notes_metadata_result.notes:
|
346 |
-
# # note_guid = notes_metadata_result.notes[0].guid
|
347 |
-
# # existing_note = note_store.getNote(note_guid, True, False, False, False)
|
348 |
-
# # existing_note.content = existing_note.content.replace("</en-note>", f"<div>{task_topic}</div></en-note>")
|
349 |
-
# # note_store.updateNote(existing_note)
|
350 |
-
# # else:
|
351 |
-
# # # Create a new note
|
352 |
-
# # note = Types.Note()
|
353 |
-
# # note.title = notebook_title
|
354 |
-
# # note.notebookGuid = notebook.guid
|
355 |
-
# # note.content = f'<?xml version="1.0" encoding="UTF-8"?>' \
|
356 |
-
# # f'<!DOCTYPE en-note SYSTEM "http://xml.evernote.com/pub/enml2.dtd">' \
|
357 |
-
# # f'<en-note><div>{task_topic}</div></en-note>'
|
358 |
-
# # note_store.createNote(note)
|
359 |
-
|
360 |
-
# # print(f"Task '{task_topic}' successfully added to Evernote under '{notebook_title}'.")
|
361 |
-
# # except Exception as e:
|
362 |
-
# # print(f"Error adding task to Evernote: {e}")
|
363 |
-
|
364 |
-
# # Mock Functions for Task Actions
|
365 |
-
# def add_to_evernote(task_topic):
|
366 |
-
# return f"Task added to Evernote with title '{task_topic}'."
|
367 |
-
|
368 |
-
|
369 |
-
# # In[8]:
|
370 |
-
|
371 |
-
|
372 |
-
# # Access the API keys and other configuration data
|
373 |
-
# TASK_WORKFLOW_TREE = load_reasoning_json('curify_ideas_reasoning.json')
|
374 |
-
# action_map = load_action_map('action_map.json')
|
375 |
-
|
376 |
-
# # In[9]:
|
377 |
-
|
378 |
-
|
379 |
-
# def generate_task_hash(task_description):
|
380 |
-
# try:
|
381 |
-
# # Ensure task_description is a string
|
382 |
-
# if not isinstance(task_description, str):
|
383 |
-
# logger.warning("task_description is not a string, attempting conversion.")
|
384 |
-
# task_description = str(task_description)
|
385 |
|
386 |
-
#
|
387 |
-
|
388 |
-
#
|
389 |
-
|
390 |
-
|
391 |
-
#
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
#
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
# # Check if the bucket exists; if not, create it
|
405 |
-
# try:
|
406 |
-
# bucket = gcs_client.get_bucket(bucket_name)
|
407 |
-
# except NotFound:
|
408 |
-
# print(f"❌ Bucket '{bucket_name}' not found. Please check the bucket name.")
|
409 |
-
# bucket = gcs_client.create_bucket(bucket_name)
|
410 |
-
# print(f"✅ Bucket '{bucket_name}' created.")
|
411 |
-
# except Exception as e:
|
412 |
-
# print(f"❌ An unexpected error occurred: {e}")
|
413 |
-
# raise
|
414 |
-
# # Get a reference to the blob
|
415 |
-
# blob = bucket.blob(destination_blob_name)
|
416 |
-
|
417 |
-
# # Upload the file
|
418 |
-
# blob.upload_from_filename(file_path)
|
419 |
-
|
420 |
-
# # Generate a signed URL for the file
|
421 |
-
# signed_url = blob.generate_signed_url(
|
422 |
-
# version="v4",
|
423 |
-
# expiration=timedelta(minutes=expiration_minutes),
|
424 |
-
# method="GET"
|
425 |
-
# )
|
426 |
-
# print(f"✅ File uploaded to Google Cloud Storage. Signed URL: {signed_url}")
|
427 |
-
# return signed_url
|
428 |
-
|
429 |
-
|
430 |
-
# # Function to check if content is Simplified Chinese
|
431 |
-
# def is_simplified(text):
|
432 |
-
# simplified_range = re.compile('[\u4e00-\u9fff]') # Han characters in general
|
433 |
-
# simplified_characters = [char for char in text if simplified_range.match(char)]
|
434 |
-
# return len(simplified_characters) > len(text) * 0.5 # Threshold of 50% to be considered simplified
|
435 |
-
|
436 |
-
# # Function to choose the appropriate font for the content
|
437 |
-
# def choose_font_for_content(content):
|
438 |
-
# return 'NotoSansSC' if is_simplified(content) else 'NotoSansTC'
|
439 |
-
|
440 |
-
# # Function to generate and save a document using ReportLab
|
441 |
-
# def generate_document(task_description, md_content, user_name='jayw', bucket_name='curify'):
|
442 |
-
# logger.debug("Starting to generate document")
|
443 |
-
|
444 |
-
# # Hash the task description to generate a unique filename
|
445 |
-
# task_hash = generate_task_hash(task_description)
|
446 |
-
|
447 |
-
# # Truncate the hash if needed (64 characters is sufficient for uniqueness)
|
448 |
-
# max_hash_length = 64 # Adjust if needed
|
449 |
-
# truncated_hash = task_hash[:max_hash_length]
|
450 |
-
|
451 |
-
# # Generate PDF file locally
|
452 |
-
# local_filename = f"{truncated_hash}.pdf" # Use the truncated hash as the local file name
|
453 |
-
# c = canvas.Canvas(local_filename, pagesize=letter)
|
454 |
-
|
455 |
-
# # Paths to the TTF fonts for Simplified and Traditional Chinese
|
456 |
-
# sc_font_path = 'NotoSansSC-Regular.ttf' # Path to Simplified Chinese font
|
457 |
-
# tc_font_path = 'NotoSansTC-Regular.ttf' # Path to Traditional Chinese font
|
458 |
-
|
459 |
-
# try:
|
460 |
-
# # Register the Simplified Chinese font
|
461 |
-
# sc_font = TTFont('NotoSansSC', sc_font_path)
|
462 |
-
# pdfmetrics.registerFont(sc_font)
|
463 |
-
|
464 |
-
# # Register the Traditional Chinese font
|
465 |
-
# tc_font = TTFont('NotoSansTC', tc_font_path)
|
466 |
-
# pdfmetrics.registerFont(tc_font)
|
467 |
|
468 |
-
|
469 |
-
|
470 |
-
# except Exception as e:
|
471 |
-
# logger.error(f"Error loading font files: {e}")
|
472 |
-
# raise RuntimeError("Failed to load one or more fonts. Ensure the font files are accessible.")
|
473 |
-
|
474 |
-
# # Set initial Y position for drawing text
|
475 |
-
# y_position = 750 # Starting position for text
|
476 |
-
|
477 |
-
# # Process dictionary and render content
|
478 |
-
# for key, value in md_content.items():
|
479 |
-
# # Choose the font based on the key (header)
|
480 |
-
# c.setFont(choose_font_for_content(key), 14)
|
481 |
-
# c.drawString(100, y_position, f"# {key}")
|
482 |
-
# y_position -= 20
|
483 |
-
|
484 |
-
# # Choose the font for the value
|
485 |
-
# c.setFont(choose_font_for_content(str(value)), 12)
|
486 |
-
|
487 |
-
# # Add value
|
488 |
-
# if isinstance(value, list): # Handle lists
|
489 |
-
# for item in value:
|
490 |
-
# c.drawString(100, y_position, f"- {item}")
|
491 |
-
# y_position -= 15
|
492 |
-
# else: # Handle single strings
|
493 |
-
# c.drawString(100, y_position, value)
|
494 |
-
# y_position -= 15
|
495 |
-
|
496 |
-
# # Check if the page needs to be broken (if Y position is too low)
|
497 |
-
# if y_position < 100:
|
498 |
-
# c.showPage() # Create a new page
|
499 |
-
# c.setFont('NotoSansSC', 12) # Reset font
|
500 |
-
# y_position = 750 # Reset the Y position for the new page
|
501 |
-
|
502 |
-
# # Save the PDF
|
503 |
-
# c.save()
|
504 |
-
|
505 |
-
# # Organize files into user-specific folders
|
506 |
-
# destination_blob_name = f"{user_name}/{truncated_hash}.pdf"
|
507 |
-
|
508 |
-
# # Upload to Google Cloud Storage and get the public URL
|
509 |
-
# public_url = save_to_google_storage(bucket_name, local_filename, destination_blob_name)
|
510 |
-
# logger.debug("Finished generating document")
|
511 |
-
# return public_url
|
512 |
-
|
513 |
-
# # In[10]:
|
514 |
-
|
515 |
-
|
516 |
-
# def execute_with_retry(sql, params=(), attempts=5, delay=1, db_name = 'curify_ideas.db'):
|
517 |
-
# for attempt in range(attempts):
|
518 |
-
# try:
|
519 |
-
# with sqlite3.connect(db_name) as conn:
|
520 |
-
# cursor = conn.cursor()
|
521 |
-
# cursor.execute(sql, params)
|
522 |
-
# conn.commit()
|
523 |
-
# break
|
524 |
-
# except sqlite3.OperationalError as e:
|
525 |
-
# if "database is locked" in str(e) and attempt < attempts - 1:
|
526 |
-
# time.sleep(delay)
|
527 |
-
# else:
|
528 |
-
# raise e
|
529 |
-
|
530 |
-
# # def enable_wal_mode(db_name = 'curify_ideas.db'):
|
531 |
-
# # with sqlite3.connect(db_name) as conn:
|
532 |
-
# # cursor = conn.cursor()
|
533 |
-
# # cursor.execute("PRAGMA journal_mode=WAL;")
|
534 |
-
# # conn.commit()
|
535 |
-
|
536 |
-
# # # Create SQLite DB and table
|
537 |
-
# # def create_db(db_name = 'curify_ideas.db'):
|
538 |
-
# # with sqlite3.connect(db_name, timeout=30) as conn:
|
539 |
-
# # c = conn.cursor()
|
540 |
-
# # c.execute('''CREATE TABLE IF NOT EXISTS sessions (
|
541 |
-
# # session_id TEXT,
|
542 |
-
# # ip_address TEXT,
|
543 |
-
# # project_desc TEXT,
|
544 |
-
# # idea_desc TEXT,
|
545 |
-
# # idea_analysis TEXT,
|
546 |
-
# # prioritization_steps TEXT,
|
547 |
-
# # timestamp DATETIME,
|
548 |
-
# # PRIMARY KEY (session_id, timestamp)
|
549 |
-
# # )
|
550 |
-
# # ''')
|
551 |
-
# # conn.commit()
|
552 |
-
|
553 |
-
# # # Function to insert session data into the SQLite database
|
554 |
-
# # def insert_session_data(session_id, ip_address, project_desc, idea_desc, idea_analysis, prioritization_steps, db_name = 'curify_ideas.db'):
|
555 |
-
# # execute_with_retry('''
|
556 |
-
# # INSERT INTO sessions (session_id, ip_address, project_desc, idea_desc, idea_analysis, prioritization_steps, timestamp)
|
557 |
-
# # VALUES (?, ?, ?, ?, ?, ?, ?)
|
558 |
-
# # ''', (session_id, ip_address, project_desc, idea_desc, json.dumps(idea_analysis), json.dumps(prioritization_steps), datetime.now()), db_name)
|
559 |
-
|
560 |
-
|
561 |
-
# # In[11]:
|
562 |
-
|
563 |
-
|
564 |
-
# def convert_to_listed_json(input_string):
|
565 |
-
# """
|
566 |
-
# Converts a string to a listed JSON object.
|
567 |
-
|
568 |
-
# Parameters:
|
569 |
-
# input_string (str): The JSON-like string to be converted.
|
570 |
-
|
571 |
-
# Returns:
|
572 |
-
# list: A JSON object parsed into a Python list of dictionaries.
|
573 |
-
# """
|
574 |
-
# try:
|
575 |
-
# # Parse the string into a Python object
|
576 |
-
# trimmed_string = input_string[input_string.index('['):input_string.rindex(']') + 1]
|
577 |
-
|
578 |
-
# json_object = json.loads(trimmed_string)
|
579 |
-
# return json_object
|
580 |
-
# except json.JSONDecodeError as e:
|
581 |
-
# return None
|
582 |
-
# return None
|
583 |
-
# #raise ValueError(f"Invalid JSON format: {e}")
|
584 |
-
|
585 |
-
# def validate_and_extract_json(json_string):
|
586 |
-
# """
|
587 |
-
# Validates the JSON string, extracts fields with possible variants using fuzzy matching.
|
588 |
-
|
589 |
-
# Args:
|
590 |
-
# - json_string (str): The JSON string to validate and extract from.
|
591 |
-
# - field_names (list): List of field names to extract, with possible variants.
|
592 |
-
|
593 |
-
# Returns:
|
594 |
-
# - dict: Extracted values with the best matched field names.
|
595 |
-
# """
|
596 |
-
# # Try to parse the JSON string
|
597 |
-
# trimmed_string = json_string[json_string.index('{'):json_string.rindex('}') + 1]
|
598 |
-
# try:
|
599 |
-
# parsed_json = json.loads(trimmed_string)
|
600 |
-
# return parsed_json
|
601 |
-
# except json.JSONDecodeError as e:
|
602 |
-
# return None
|
603 |
-
|
604 |
-
# # {"error": "Parsed JSON is not a dictionary."}
|
605 |
-
# return None
|
606 |
-
|
607 |
-
# def json_to_pandas(dat_json, dat_schema = {'name':"", 'description':""}):
|
608 |
-
# dat_df = pd.DataFrame([dat_schema])
|
609 |
-
# try:
|
610 |
-
# dat_df = pd.DataFrame(dat_json)
|
611 |
-
|
612 |
-
# except Exception as e:
|
613 |
-
# dat_df = pd.DataFrame([dat_schema])
|
614 |
-
# # ValueError(f"Failed to parse LLM output as JSON: {e}\nOutput: {res}")
|
615 |
-
# return dat_df
|
616 |
-
|
617 |
-
|
618 |
-
# # In[12]:
|
619 |
-
|
620 |
-
|
621 |
-
# client = OpenAI(
|
622 |
-
# api_key= os.environ.get("OPENAI_API_KEY"), # This is the default and can be omitted
|
623 |
-
# )
|
624 |
-
|
625 |
-
# # Function to call OpenAI API with compact error handling
|
626 |
-
# def call_openai_api(prompt, model="gpt-4o", max_tokens=5000, retries=3, backoff_factor=2):
|
627 |
-
# """
|
628 |
-
# Send a prompt to the OpenAI API and handle potential errors robustly.
|
629 |
-
|
630 |
-
# Parameters:
|
631 |
-
# prompt (str): The user input or task prompt to send to the model.
|
632 |
-
# model (str): The OpenAI model to use (default is "gpt-4").
|
633 |
-
# max_tokens (int): The maximum number of tokens in the response.
|
634 |
-
# retries (int): Number of retry attempts in case of transient errors.
|
635 |
-
# backoff_factor (int): Backoff time multiplier for retries.
|
636 |
-
|
637 |
-
# Returns:
|
638 |
-
# str: The model's response content if successful.
|
639 |
-
# """
|
640 |
-
# for attempt in range(1, retries + 1):
|
641 |
-
# try:
|
642 |
-
# response = client.chat.completions.create(
|
643 |
-
# model="gpt-4o",
|
644 |
-
# messages=[{"role": "user", "content": prompt}],
|
645 |
-
# max_tokens=5000,
|
646 |
-
# )
|
647 |
-
# return response.choices[0].message.content.strip()
|
648 |
|
649 |
-
#
|
650 |
-
# logging.warning(f"Transient error: {e}. Attempt {attempt} of {retries}. Retrying...")
|
651 |
-
# except (openai.BadRequestError, openai.AuthenticationError) as e:
|
652 |
-
# logging.error(f"Unrecoverable error: {e}. Check your inputs or API key.")
|
653 |
-
# break
|
654 |
-
# except Exception as e:
|
655 |
-
# logging.error(f"Unexpected error: {e}. Attempt {attempt} of {retries}. Retrying...")
|
656 |
|
657 |
-
#
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
# def fn_analyze_task(project_context, task_description):
|
664 |
-
# prompt = (
|
665 |
-
# f"You are working in the context of {project_context}. "
|
666 |
-
# f"Your task is to analyze the task: {task_description} "
|
667 |
-
# "Please analyze the following aspects: "
|
668 |
-
# "1) Determine which project this item belongs to. If the idea does not belong to any existing project, categorize it under 'Other'. "
|
669 |
-
# "2) Assess whether this idea can be treated as a concrete task. "
|
670 |
-
# "3) Evaluate whether a document can be generated as an intermediate result. "
|
671 |
-
# "4) Identify the appropriate category of the task. Possible categories are: 'Blogs/Papers', 'Tools', 'Brainstorming', 'Issues', and 'Others'. "
|
672 |
-
# "5) Extract the topic of the task. "
|
673 |
-
# "Please provide the output in JSON format using the structure below: "
|
674 |
-
# "{"
|
675 |
-
# " \"description\": \"\", "
|
676 |
-
# " \"project_association\": \"\", "
|
677 |
-
# " \"is_task\": \"Yes/No\", "
|
678 |
-
# " \"is_document\": \"Yes/No\", "
|
679 |
-
# " \"task_category\": \"\", "
|
680 |
-
# " \"task_topic\": \"\" "
|
681 |
-
# "}"
|
682 |
-
# )
|
683 |
-
# res_task_analysis = call_openai_api(prompt)
|
684 |
-
|
685 |
-
# try:
|
686 |
-
# json_task_analysis = validate_and_extract_json(res_task_analysis)
|
687 |
-
|
688 |
-
# return json_task_analysis
|
689 |
-
# except ValueError as e:
|
690 |
-
# logger.debug("ValueError occurred: %s", str(e), exc_info=True) # Log the exception details
|
691 |
-
# return None
|
692 |
-
|
693 |
-
|
694 |
-
# # In[13]:
|
695 |
-
|
696 |
-
# # Recursive Task Executor
|
697 |
-
# def fn_process_task(project_desc_table, task_description, bucket_name='curify'):
|
698 |
-
|
699 |
-
# project_context = project_desc_table.to_string(index=False)
|
700 |
-
# task_analysis = fn_analyze_task(project_context, task_description)
|
701 |
-
|
702 |
-
# if task_analysis:
|
703 |
-
# execution_status = []
|
704 |
-
# execution_results = task_analysis.copy()
|
705 |
-
# execution_results['deliverables'] = ''
|
706 |
-
|
707 |
-
# def traverse(node, previous_output=None):
|
708 |
-
# if not node: # If the node is None or invalid
|
709 |
-
# return # Exit if the node is invalid
|
710 |
-
|
711 |
-
# # Check if there is a condition to evaluate
|
712 |
-
# if "check" in node:
|
713 |
-
# # Safely attempt to retrieve the value from execution_results
|
714 |
-
# if node["check"] in execution_results:
|
715 |
-
# value = execution_results[node["check"]] # Evaluate the check condition
|
716 |
-
# traverse(node.get(value, node.get("default")), previous_output)
|
717 |
-
# else:
|
718 |
-
# # Log an error and exit, but keep partial results
|
719 |
-
# logger.error(f"Key '{node['check']}' not found in execution_results.")
|
720 |
-
# return
|
721 |
|
722 |
-
|
723 |
-
# elif "action" in node:
|
724 |
-
# action_name = node["action"]
|
725 |
-
# input_key = node.get("input", 'task_topic')
|
726 |
-
|
727 |
-
# if input_key in execution_results.keys():
|
728 |
-
# inputs = {input_key: execution_results[input_key]}
|
729 |
-
# else:
|
730 |
-
# # Log an error and exit, but keep partial results
|
731 |
-
# logger.error(f"Workflow action {action_name} input key {input_key} not in execution_results.")
|
732 |
-
# return
|
733 |
-
|
734 |
-
# logger.debug(f"Executing: {action_name} with inputs: {inputs}")
|
735 |
-
|
736 |
-
# # Execute the action function
|
737 |
-
# action_func = action_map.get(action_name, unsupported_task)
|
738 |
-
# try:
|
739 |
-
# output = action_func(**inputs)
|
740 |
-
# except Exception as e:
|
741 |
-
# # Handle action function failure
|
742 |
-
# logger.error(f"Error executing action '{action_name}': {e}")
|
743 |
-
# return
|
744 |
-
|
745 |
-
# # Store execution results or append to previous outputs
|
746 |
-
# execution_status.append({"action": action_name, "output": output})
|
747 |
-
|
748 |
-
# # Check if 'output' field exists in the node
|
749 |
-
# if 'output' in node:
|
750 |
-
# # If 'output' exists, assign the output to execution_results with the key from node['output']
|
751 |
-
# execution_results[node['output']] = output
|
752 |
-
# else:
|
753 |
-
# # If 'output' does not exist, append the output to 'deliverables'
|
754 |
-
# execution_results['deliverables'] += output
|
755 |
-
|
756 |
-
# # Traverse to the next node, if it exists
|
757 |
-
# if "next" in node and node["next"]:
|
758 |
-
# traverse(node["next"], previous_output)
|
759 |
-
|
760 |
-
# try:
|
761 |
-
# traverse(TASK_WORKFLOW_TREE["start"])
|
762 |
-
# execution_results['doc_url'] = generate_document(task_description, execution_results)
|
763 |
-
# except Exception as e:
|
764 |
-
# logger.error(f"Traverse Error: {e}")
|
765 |
-
# finally:
|
766 |
-
# # Always return partial results, even if an error occurs
|
767 |
-
# return task_analysis, pd.DataFrame(execution_status), execution_results
|
768 |
-
# else:
|
769 |
-
# logger.error("Empty task analysis.")
|
770 |
-
# return {}, pd.DataFrame(), {}
|
771 |
-
|
772 |
-
# # In[14]:
|
773 |
-
|
774 |
-
|
775 |
-
# # Initialize dataframes for the schema
|
776 |
-
# ideas_df = pd.DataFrame(columns=["Idea ID", "Content", "Tags"])
|
777 |
-
|
778 |
-
# def extract_ideas(context, text):
|
779 |
-
# """
|
780 |
-
# Extract project ideas from text, with or without a context, and return in JSON format.
|
781 |
-
|
782 |
-
# Parameters:
|
783 |
-
# context (str): Context of the extraction. Can be empty.
|
784 |
-
# text (str): Text to extract ideas from.
|
785 |
-
|
786 |
-
# Returns:
|
787 |
-
# list: A list of ideas, each represented as a dictionary with name and description.
|
788 |
-
# """
|
789 |
-
# if context:
|
790 |
-
# # Template when context is provided
|
791 |
-
# prompt = (
|
792 |
-
# f"You are working in the context of {context}. "
|
793 |
-
# "Please extract the ongoing projects with project name and description."
|
794 |
-
# "Please only the listed JSON as output string."
|
795 |
-
# f"Ongoing projects: {text}"
|
796 |
-
# )
|
797 |
-
# else:
|
798 |
-
# # Template when context is not provided
|
799 |
-
# prompt = (
|
800 |
-
# "Given the following information about the user."
|
801 |
-
# "Please extract the ongoing projects with project name and description."
|
802 |
-
# "Please only the listed JSON as output string."
|
803 |
-
# f"Ongoing projects: {text}"
|
804 |
-
# )
|
805 |
-
|
806 |
-
# # return the raw string
|
807 |
-
# return call_openai_api(prompt)
|
808 |
-
|
809 |
-
# def df_to_string(df, empty_message = ''):
|
810 |
-
# """
|
811 |
-
# Converts a DataFrame to a string if it is not empty.
|
812 |
-
# If the DataFrame is empty, returns an empty string.
|
813 |
-
|
814 |
-
# Parameters:
|
815 |
-
# ideas_df (pd.DataFrame): The DataFrame to be converted.
|
816 |
|
817 |
-
|
818 |
-
|
819 |
-
# """
|
820 |
-
# if df.empty:
|
821 |
-
# return empty_message
|
822 |
-
# else:
|
823 |
-
# return df.to_string(index=False)
|
824 |
-
|
825 |
|
826 |
-
# # In[15]:
|
827 |
|
|
|
828 |
|
829 |
-
# # Shared state variables
|
830 |
-
# shared_state = {"project_desc_table": pd.DataFrame(), "task_analysis_txt": "", "execution_status": pd.DataFrame(), "execution_results": {}}
|
831 |
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
# logger.debug(f"{key}: Unsupported type: {value}")
|
844 |
-
# return shared_state['project_desc_table'], shared_state['task_analysis_txt'], shared_state['execution_status'], shared_state['execution_results']
|
845 |
-
|
846 |
-
# # response = requests.get("http://localhost:5000/state")
|
847 |
-
# # # Check the status code and the raw response
|
848 |
-
# # if response.status_code == 200:
|
849 |
-
# # try:
|
850 |
-
# # state = response.json() # Try to parse JSON
|
851 |
-
# # return pd.DataFrame(state["project_desc_table"]), state["task_analysis_txt"], pd.DataFrame(state["execution_status"]), state["execution_results"]
|
852 |
-
# # except ValueError as e:
|
853 |
-
# # logger.error(f"JSON decoding failed: {e}")
|
854 |
-
# # logger.debug("Raw response body:", response.text)
|
855 |
-
# # else:
|
856 |
-
# # logger.error(f"Error: {response.status_code} - {response.text}")
|
857 |
-
# # """Fetch the updated shared state from FastAPI."""
|
858 |
-
# # return pd.DataFrame(), "", pd.DataFrame(), {}
|
859 |
-
|
860 |
|
861 |
-
#
|
862 |
-
|
863 |
-
|
864 |
-
# shared_state['task_analysis_txt'] = task_analysis_txt
|
865 |
-
# shared_state['execution_status'] = execution_status
|
866 |
-
# shared_state['execution_results'] = execution_results
|
867 |
-
# return True
|
868 |
|
869 |
|
870 |
-
#
|
871 |
|
872 |
|
873 |
-
#
|
874 |
-
|
875 |
|
876 |
-
|
877 |
-
# # shutil.copy("curify_idea.db", new_db)
|
878 |
|
879 |
-
#
|
880 |
-
|
881 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
|
883 |
-
|
884 |
-
#
|
|
|
885 |
|
886 |
-
|
887 |
-
# update_gradio_state(project_desc_table, "", pd.DataFrame(), {})
|
888 |
-
# return project_desc_table
|
889 |
|
|
|
|
|
|
|
890 |
|
891 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
892 |
|
|
|
|
|
893 |
|
894 |
-
|
|
|
|
|
895 |
|
896 |
-
# # # convert_to_listed_json(extract_ideas('AI-powered tools for productivity', project_description))
|
897 |
|
898 |
-
#
|
899 |
-
# # task_analysis, reasoning_path = generate_reasoning_path(project_description, task_description)
|
900 |
|
901 |
-
# # steps = store_and_execute_task(task_description, reasoning_path)
|
902 |
|
903 |
-
#
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
|
|
|
|
|
|
|
|
908 |
|
909 |
-
#
|
910 |
-
|
911 |
-
|
912 |
-
#
|
913 |
-
|
914 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
915 |
|
916 |
-
# # Send response back to WhatsApp
|
917 |
-
# try:
|
918 |
-
# twillo_client.messages.create(
|
919 |
-
# from_=twilio_phone_number,
|
920 |
-
# to=from_whatsapp,
|
921 |
-
# body=body_message
|
922 |
-
# )
|
923 |
-
# except Exception as e:
|
924 |
-
# logger.error(f"Twilio Error: {e}")
|
925 |
-
# raise HTTPException(status_code=500, detail=f"Error sending WhatsApp message: {str(e)}")
|
926 |
|
927 |
-
#
|
928 |
|
929 |
-
# # Initialize the Whisper pipeline
|
930 |
-
# whisper_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
|
931 |
|
932 |
-
|
933 |
-
|
934 |
-
# try:
|
935 |
-
# media_response = requests.get(media_url, auth=HTTPBasicAuth(account_sid, auth_token))
|
936 |
-
# # Download the media file
|
937 |
-
# media_response.raise_for_status()
|
938 |
-
# audio_data = media_response.content
|
939 |
|
940 |
-
|
941 |
-
#
|
942 |
-
|
943 |
-
|
|
|
|
|
|
|
944 |
|
945 |
-
# # Transcribe the audio using Whisper
|
946 |
-
# transcription = whisper_pipeline(audio_file_path, return_timestamps=True)
|
947 |
-
# logger.debug(f"Transcription: {transcription['text']}")
|
948 |
-
# return transcription["text"]
|
949 |
|
950 |
-
#
|
951 |
-
# logger.error(f"An error occurred: {e}")
|
952 |
-
# return None
|
953 |
|
954 |
|
955 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
956 |
|
957 |
|
958 |
-
#
|
959 |
|
960 |
-
# @app.get("/state")
|
961 |
-
# async def fetch_state():
|
962 |
-
# return shared_state
|
963 |
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
# # Log the form data to debug
|
968 |
-
# print("Received data:", form_data)
|
969 |
|
970 |
-
|
971 |
-
|
972 |
-
#
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
#
|
977 |
-
|
978 |
-
|
979 |
-
#
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
#
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
|
|
|
|
|
|
|
|
995 |
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
# task_analysis_txt, execution_status, execution_results = fn_process_task(project_desc_table, processed_input)
|
1002 |
-
# update_gradio_state(task_analysis_txt, execution_status, execution_results)
|
1003 |
-
|
1004 |
-
# doc_url = 'Fail to generate doc'
|
1005 |
-
# if 'doc_url' in execution_results:
|
1006 |
-
# doc_url = execution_results['doc_url']
|
1007 |
-
|
1008 |
-
# # Respond to the user on WhatsApp with the processed idea
|
1009 |
-
# response = message_back(processed_input, execution_status, doc_url, from_number)
|
1010 |
-
# logger.debug(response)
|
1011 |
-
|
1012 |
-
# return JSONResponse(content=str(response))
|
1013 |
-
|
1014 |
-
# except Exception as e:
|
1015 |
-
# logger.error(f"Error during task processing: {e}")
|
1016 |
-
# return JSONResponse(content={"error": str(e)}, status_code=500)
|
1017 |
|
1018 |
-
|
|
|
|
|
|
|
|
|
1019 |
|
1020 |
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
# else:
|
1026 |
-
# return "❌ Invalid Gmail address. Please try again.", gr.update(), gr.update()
|
1027 |
|
1028 |
-
|
1029 |
-
|
1030 |
-
# return (project_extraction(project_description),
|
1031 |
-
# gr.update(visible=False), gr.update(visible=True))
|
1032 |
|
1033 |
-
|
1034 |
-
# def integrate_todoist():
|
1035 |
-
# return "✅ Successfully connected to Todoist!"
|
1036 |
|
1037 |
-
|
1038 |
-
|
|
|
|
|
1039 |
|
1040 |
-
|
1041 |
-
# return "✅ Successfully connected to Google Calendar!"
|
1042 |
|
1043 |
-
|
1044 |
-
|
1045 |
-
|
1046 |
-
#
|
1047 |
-
|
1048 |
-
# # Add inline styles to control width and height
|
1049 |
-
# styled_svg = f"""
|
1050 |
-
# <div style="width: {width}; height: {height}; overflow: auto;">
|
1051 |
-
# {svg_content}
|
1052 |
-
# </div>
|
1053 |
-
# """
|
1054 |
-
# return styled_svg
|
1055 |
-
|
1056 |
-
|
1057 |
-
# # In[20]:
|
1058 |
-
|
1059 |
-
|
1060 |
-
# # Gradio Demo
|
1061 |
-
# def create_gradio_interface(state=None):
|
1062 |
-
# with gr.Blocks(
|
1063 |
-
# css="""
|
1064 |
-
# .gradio-table td {
|
1065 |
-
# white-space: normal !important;
|
1066 |
-
# word-wrap: break-word !important;
|
1067 |
-
# }
|
1068 |
-
# .gradio-table {
|
1069 |
-
# width: 100% !important; /* Adjust to 100% to fit the container */
|
1070 |
-
# table-layout: fixed !important; /* Fixed column widths */
|
1071 |
-
# overflow-x: hidden !important; /* Disable horizontal scrolling */
|
1072 |
-
# }
|
1073 |
-
# .gradio-container {
|
1074 |
-
# overflow-x: hidden !important; /* Disable horizontal scroll for entire container */
|
1075 |
-
# padding: 0 !important; /* Remove any default padding */
|
1076 |
-
# }
|
1077 |
-
# .gradio-column {
|
1078 |
-
# max-width: 100% !important; /* Ensure columns take up full width */
|
1079 |
-
# overflow: hidden !important; /* Hide overflow to prevent horizontal scroll */
|
1080 |
-
# }
|
1081 |
-
# .gradio-row {
|
1082 |
-
# overflow-x: hidden !important; /* Prevent horizontal scroll on rows */
|
1083 |
-
# }
|
1084 |
-
# """) as demo:
|
1085 |
-
|
1086 |
-
# # Page 1: Mock Gmail Login
|
1087 |
-
# with gr.Group(visible=True) as login_page:
|
1088 |
-
# gr.Markdown("### **1️⃣ Login with Gmail**")
|
1089 |
-
# email_input = gr.Textbox(label="Enter your Gmail Address", placeholder="[email protected]")
|
1090 |
-
# login_button = gr.Button("Login")
|
1091 |
-
# login_result = gr.Textbox(label="Login Status", interactive=False, visible=False)
|
1092 |
-
# # Page 2: User Onboarding
|
1093 |
-
# with gr.Group(visible=False) as onboarding_page:
|
1094 |
-
# gr.Markdown("### **2️⃣ Tell Us About Yourself**")
|
1095 |
-
# role = gr.Textbox(label="What is your role?", placeholder="e.g. Developer, Designer")
|
1096 |
-
# industry = gr.Textbox(label="Which industry are you in?", placeholder="e.g. Software, Finance")
|
1097 |
-
# project_description = gr.Textbox(label="Describe your project", placeholder="e.g. A task management app")
|
1098 |
-
# submit_survey = gr.Button("Submit")
|
1099 |
-
|
1100 |
-
# # Page 3: Mock Integrations with Separate Buttons
|
1101 |
-
# with gr.Group(visible=False) as integrations_page:
|
1102 |
-
# gr.Markdown("### **3️⃣ Connect Integrations**")
|
1103 |
-
# gr.Markdown("Click on the buttons below to connect each tool:")
|
1104 |
-
|
1105 |
-
# # Separate Buttons and Results for Each Integration
|
1106 |
-
# todoist_button = gr.Button("Connect to Todoist")
|
1107 |
-
# todoist_result = gr.Textbox(label="Todoist Status", interactive=False, visible=False)
|
1108 |
-
|
1109 |
-
# evernote_button = gr.Button("Connect to Evernote")
|
1110 |
-
# evernote_result = gr.Textbox(label="Evernote Status", interactive=False, visible=False)
|
1111 |
-
|
1112 |
-
# calendar_button = gr.Button("Connect to Google Calendar")
|
1113 |
-
# calendar_result = gr.Textbox(label="Google Calendar Status", interactive=False, visible=False)
|
1114 |
-
|
1115 |
-
# # Skip Button to proceed directly to next page
|
1116 |
-
# skip_integrations = gr.Button("Skip ➡️")
|
1117 |
-
# next_button = gr.Button("Proceed to QR Code")
|
1118 |
-
|
1119 |
-
# with gr.Group(visible=False) as qr_code_page:
|
1120 |
-
# # Page 4: QR Code and Curify Ideas
|
1121 |
-
# gr.Markdown("## Curify: Unified AI Tools for Productivity")
|
1122 |
-
|
1123 |
-
# with gr.Tab("Curify Idea"):
|
1124 |
-
# with gr.Row():
|
1125 |
-
# with gr.Column():
|
1126 |
-
# gr.Markdown("#### ** QR Code**")
|
1127 |
-
# # Path to your local SVG file
|
1128 |
-
# svg_file_path = "qr.svg"
|
1129 |
-
# # Load the SVG content
|
1130 |
-
# svg_content = load_svg_with_size(svg_file_path, width="200px", height="200px")
|
1131 |
-
# gr.HTML(svg_content)
|
1132 |
-
|
1133 |
-
# # Column 1: Webpage rendering
|
1134 |
-
# with gr.Column():
|
1135 |
-
|
1136 |
-
# gr.Markdown("## Projects Overview")
|
1137 |
-
# project_desc_table = gr.DataFrame(
|
1138 |
-
# type="pandas"
|
1139 |
-
# )
|
1140 |
-
|
1141 |
-
# gr.Markdown("## Enter task message.")
|
1142 |
-
# idea_input = gr.Textbox(
|
1143 |
-
# label=None,
|
1144 |
-
# placeholder="Describe the task you want to execute (e.g., Research Paper Review)")
|
1145 |
-
|
1146 |
-
# task_btn = gr.Button("Generate Task Steps")
|
1147 |
-
# fetch_state_btn = gr.Button("Fetch Updated State")
|
1148 |
-
|
1149 |
-
# with gr.Column():
|
1150 |
-
# gr.Markdown("## Task analysis")
|
1151 |
-
# task_analysis_txt = gr.Textbox(
|
1152 |
-
# label=None,
|
1153 |
-
# placeholder="Here is the execution status of your task...")
|
1154 |
-
|
1155 |
-
# gr.Markdown("## Execution status")
|
1156 |
-
# execution_status = gr.DataFrame(
|
1157 |
-
# type="pandas"
|
1158 |
-
# )
|
1159 |
-
# gr.Markdown("## Execution output")
|
1160 |
-
# execution_results = gr.JSON(
|
1161 |
-
# label=None
|
1162 |
-
# )
|
1163 |
-
# state_output = gr.State() # Add a state output to hold the state
|
1164 |
-
|
1165 |
-
# task_btn.click(
|
1166 |
-
# fn_process_task,
|
1167 |
-
# inputs=[project_desc_table, idea_input],
|
1168 |
-
# outputs=[task_analysis_txt, execution_status, execution_results]
|
1169 |
-
# )
|
1170 |
-
|
1171 |
-
# fetch_state_btn.click(
|
1172 |
-
# fetch_updated_state,
|
1173 |
-
# inputs=None,
|
1174 |
-
# outputs=[project_desc_table, task_analysis_txt, execution_status, execution_results]
|
1175 |
-
# )
|
1176 |
-
|
1177 |
-
# # Page 1 -> Page 2 Transition
|
1178 |
-
# login_button.click(
|
1179 |
-
# mock_login,
|
1180 |
-
# inputs=email_input,
|
1181 |
-
# outputs=[login_result, login_page, onboarding_page]
|
1182 |
-
# )
|
1183 |
-
|
1184 |
-
# # Page 2 -> Page 3 Transition (Submit and Skip)
|
1185 |
-
# submit_survey.click(
|
1186 |
-
# onboarding_survey,
|
1187 |
-
# inputs=[role, industry, project_description],
|
1188 |
-
# outputs=[project_desc_table, onboarding_page, integrations_page]
|
1189 |
-
# )
|
1190 |
-
|
1191 |
-
# # Integration Buttons
|
1192 |
-
# todoist_button.click(integrate_todoist, outputs=todoist_result)
|
1193 |
-
# evernote_button.click(integrate_evernote, outputs=evernote_result)
|
1194 |
-
# calendar_button.click(integrate_calendar, outputs=calendar_result)
|
1195 |
-
|
1196 |
-
# # Skip Integrations and Proceed
|
1197 |
-
# skip_integrations.click(
|
1198 |
-
# lambda: (gr.update(visible=False), gr.update(visible=True)),
|
1199 |
-
# outputs=[integrations_page, qr_code_page]
|
1200 |
-
# )
|
1201 |
-
|
1202 |
-
# # # Set the load_fn to initialize the state when the page is loaded
|
1203 |
-
# # demo.load(
|
1204 |
-
# # curify_ideas,
|
1205 |
-
# # inputs=[project_input, idea_input],
|
1206 |
-
# # outputs=[task_steps, task_analysis_txt, state_output]
|
1207 |
-
# # )
|
1208 |
-
# return demo
|
1209 |
-
# # Load function to initialize the state
|
1210 |
-
# # demo.load(load_fn, inputs=None, outputs=[state]) # Initialize the state when the page is loaded
|
1211 |
-
|
1212 |
-
# # Function to launch Gradio
|
1213 |
-
# # def launch_gradio():
|
1214 |
-
# # demo = create_gradio_interface()
|
1215 |
-
# # demo.launch(share=True, inline=False) # Gradio in the foreground
|
1216 |
-
|
1217 |
-
# # # Function to run FastAPI server using uvicorn in the background
|
1218 |
-
# # async def run_fastapi():
|
1219 |
-
# # config = uvicorn.Config(app, host="0.0.0.0", port=5000, reload=True, log_level="debug")
|
1220 |
-
# # server = uvicorn.Server(config)
|
1221 |
-
# # await server.serve()
|
1222 |
-
|
1223 |
-
# # # FastAPI endpoint to display a message
|
1224 |
-
# # @app.get("/", response_class=HTMLResponse)
|
1225 |
-
# # async def index():
|
1226 |
-
# # return "FastAPI is running. Visit Gradio at the provided public URL."
|
1227 |
-
|
1228 |
-
# # # Main entry point for the asynchronous execution
|
1229 |
-
# # async def main():
|
1230 |
-
# # # Run Gradio in the foreground and FastAPI in the background
|
1231 |
-
# # loop = asyncio.get_event_loop()
|
1232 |
-
|
1233 |
-
# # # Run Gradio in a separate thread (non-blocking)
|
1234 |
-
# # loop.run_in_executor(None, launch_gradio)
|
1235 |
-
|
1236 |
-
# # # Run FastAPI in the background (asynchronous)
|
1237 |
-
# # await run_fastapi()
|
1238 |
|
1239 |
-
# # if __name__ == "__main__":
|
1240 |
-
# # import nest_asyncio
|
1241 |
-
# # nest_asyncio.apply() # Allow nested use of asyncio event loops in Jupyter notebooks
|
1242 |
-
|
1243 |
-
# # # Run the main function to launch both services concurrently
|
1244 |
-
# # asyncio.run(main())
|
1245 |
-
|
1246 |
-
# # In[21]:
|
1247 |
-
# demo = create_gradio_interface()
|
1248 |
-
# # Use Gradio's `server_app` to get an ASGI app for Blocks
|
1249 |
-
# gradio_asgi_app = demo.launch(share=False, inbrowser=False, server_name="0.0.0.0", server_port=7860, inline=False)
|
1250 |
-
|
1251 |
-
# logging.debug(f"Gradio version: {gr.__version__}")
|
1252 |
-
# logging.debug(f"FastAPI version: {fastapi.__version__}")
|
1253 |
-
|
1254 |
-
# # # Mount the Gradio ASGI app at "/gradio"
|
1255 |
-
# # app.mount("/gradio", gradio_asgi_app)
|
1256 |
-
|
1257 |
-
# # # create a static directory to store the static files
|
1258 |
-
# # static_dir = Path('./static')
|
1259 |
-
# # static_dir.mkdir(parents=True, exist_ok=True)
|
1260 |
-
|
1261 |
-
# # # mount FastAPI StaticFiles server
|
1262 |
-
# # app.mount("/static", StaticFiles(directory=static_dir), name="static")
|
1263 |
-
|
1264 |
-
# # Dynamically check for the Gradio asset directory
|
1265 |
-
# # gradio_assets_path = os.path.join(os.path.dirname(gr.__file__), "static")
|
1266 |
-
|
1267 |
-
# # if os.path.exists(gradio_assets_path):
|
1268 |
-
# # # If assets exist, mount them
|
1269 |
-
# # app.mount("/assets", StaticFiles(directory=gradio_assets_path), name="assets")
|
1270 |
-
# # else:
|
1271 |
-
# # logging.error(f"Gradio assets directory not found at: {gradio_assets_path}")
|
1272 |
-
|
1273 |
-
# # Redirect from the root endpoint to the Gradio app
|
1274 |
-
# @app.get("/", response_class=RedirectResponse)
|
1275 |
-
# async def index():
|
1276 |
-
# return RedirectResponse(url="/gradio", status_code=307)
|
1277 |
-
|
1278 |
-
# # Run the FastAPI server using uvicorn
|
1279 |
-
# if __name__ == "__main__":
|
1280 |
-
# # port = int(os.getenv("PORT", 5000)) # Default to 7860 if PORT is not set
|
1281 |
-
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding: utf-8
|
3 |
|
4 |
+
# In[23]:
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# In[24]:
|
8 |
|
|
|
9 |
|
10 |
+
# import subprocess
|
11 |
|
12 |
+
# try:
|
13 |
+
# result = subprocess.run(["ffmpeg", "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
14 |
+
# if result.returncode == 0:
|
15 |
+
# print("FFmpeg version:")
|
16 |
+
# print(result.stdout.split('\n')[0]) # Print the first line of the version output
|
17 |
+
# else:
|
18 |
+
# print("Error checking FFmpeg version:")
|
19 |
+
# print(result.stderr)
|
20 |
+
# except FileNotFoundError:
|
21 |
+
# print("FFmpeg is not installed or not found in PATH.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
|
|
23 |
|
24 |
+
# In[25]:
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
from urllib.parse import urlparse, parse_qs
|
27 |
+
import gradio as gr
|
28 |
+
import requests
|
29 |
+
from bs4 import BeautifulSoup
|
30 |
+
import openai
|
31 |
+
from openai import OpenAI
|
32 |
+
import speech_recognition as sr
|
33 |
+
from transformers import pipeline
|
34 |
|
35 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
36 |
|
37 |
+
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled
|
38 |
+
from youtube_transcript_api.formatters import TextFormatter
|
|
|
39 |
|
40 |
+
from urllib.parse import urlparse, parse_qs
|
41 |
+
import json
|
|
|
|
|
|
|
42 |
|
43 |
+
import os
|
44 |
+
import yaml
|
45 |
+
import pandas as pd
|
46 |
+
import numpy as np
|
47 |
|
48 |
+
import azureml.core
|
49 |
+
from azureml.core import Workspace, Datastore, ComputeTarget
|
50 |
+
from azure.identity import DefaultAzureCredential
|
51 |
+
from azure.ai.ml import MLClient
|
52 |
+
from azure.ai.ml import command
|
53 |
+
from azure.ai.ml import Input, Output
|
54 |
+
from azure.ai.ml import load_component
|
55 |
+
from azure.ai.ml.entities import Environment, Data, PipelineJob, Job, Schedule
|
56 |
+
from datetime import datetime, timedelta
|
57 |
|
58 |
|
59 |
+
# In[26]:
|
60 |
|
61 |
+
openai_api_key = os.environ["OPENAI_API_KEY"]
|
|
|
|
|
|
|
62 |
|
63 |
+
# In[27]:
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
+
# transcription = pipeline(
|
67 |
+
# "automatic-speech-recognition",
|
68 |
+
# model="openai/whisper-medium")
|
69 |
+
# result = transcription("2024_dairy.wav", return_timestamps=True)
|
70 |
+
# print(result["text"])
|
71 |
|
|
|
72 |
|
73 |
+
# In[28]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
+
def is_youtube_url(url):
|
77 |
+
try:
|
78 |
+
# Parse the URL
|
79 |
+
parsed_url = urlparse(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# Check if the domain is YouTube
|
82 |
+
if parsed_url.netloc in ["www.youtube.com", "youtube.com", "m.youtube.com", "youtu.be"]:
|
83 |
+
# For standard YouTube URLs, ensure it has a 'v' parameter
|
84 |
+
if "youtube.com" in parsed_url.netloc:
|
85 |
+
return "v" in parse_qs(parsed_url.query)
|
86 |
+
# For shortened YouTube URLs (youtu.be), check the path
|
87 |
+
elif "youtu.be" in parsed_url.netloc:
|
88 |
+
return len(parsed_url.path.strip("/")) > 0
|
89 |
+
return False
|
90 |
+
except Exception as e:
|
91 |
+
return False
|
92 |
+
|
93 |
+
def get_youtube_transcript(youtube_url):
|
94 |
+
try:
|
95 |
+
# Parse the video ID from the URL
|
96 |
+
parsed_url = urlparse(youtube_url)
|
97 |
+
video_id = parse_qs(parsed_url.query).get("v")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
if not video_id:
|
100 |
+
return "Invalid YouTube URL. Please provide a valid URL."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
video_id = video_id[0] # Extract the video ID
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
# Fetch the transcript
|
105 |
+
transcript = YouTubeTranscriptApi.get_transcript(video_id, proxies={"https": "http://localhost:8080"})
|
106 |
+
|
107 |
+
# Format the transcript as plain text
|
108 |
+
formatter = TextFormatter()
|
109 |
+
formatted_transcript = formatter.format_transcript(transcript)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
return formatted_transcript
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
except Exception as e:
|
114 |
+
return f"An error occurred: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
116 |
|
117 |
+
# In[29]:
|
118 |
|
|
|
|
|
119 |
|
120 |
+
def check_subtitles(video_id):
|
121 |
+
try:
|
122 |
+
transcripts = YouTubeTranscriptApi.list_transcripts(video_id)
|
123 |
+
print(f"Available transcripts: {transcripts}")
|
124 |
+
return True
|
125 |
+
except TranscriptsDisabled:
|
126 |
+
print("Subtitles are disabled for this video.")
|
127 |
+
return False
|
128 |
+
except Exception as e:
|
129 |
+
print(f"An unexpected error occurred: {e}")
|
130 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
# Test
|
133 |
+
video_id = "Um017R5Kr3A" # Replace with your YouTube video ID
|
134 |
+
check_subtitles(video_id)
|
|
|
|
|
|
|
|
|
135 |
|
136 |
|
137 |
+
# In[30]:
|
138 |
|
139 |
|
140 |
+
# 设置 OpenAI API
|
141 |
+
client = OpenAI(api_key=openai_api_key)
|
142 |
|
143 |
+
### Curify Digest ###
|
|
|
144 |
|
145 |
+
# Function to fetch webpage, render it, and generate summary/perspectives
|
146 |
+
def process_webpage(url):
|
147 |
+
try:
|
148 |
+
if is_youtube_url(url):
|
149 |
+
rendered_content = get_youtube_transcript(url)
|
150 |
+
else:
|
151 |
+
# Fetch and parse webpage
|
152 |
+
response = requests.get(url)
|
153 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
154 |
+
html_content = str(soup.prettify())
|
155 |
|
156 |
+
for script in soup(["script", "style"]):
|
157 |
+
script.decompose() # Remove script and style tags
|
158 |
+
rendered_content = soup.get_text(separator="\n").strip().replace("\n\n", "")
|
159 |
|
160 |
+
text_content = rendered_content[:2000] # Limit content length for processing
|
|
|
|
|
161 |
|
162 |
+
# Generate summary and perspectives
|
163 |
+
summary_prompt = f"Summarize the following content:\n{text_content}\n Please use the language of the originial content"
|
164 |
+
perspectives_prompt = f"Generate a reflective review for the following content:\n{text_content}\n Please output the perspectives in no more than 5 very concise bullet points. Please use the language of the originial content"
|
165 |
|
166 |
+
summary_response = client.chat.completions.create(
|
167 |
+
model="gpt-4o",
|
168 |
+
messages=[{"role": "user", "content": summary_prompt}],
|
169 |
+
max_tokens=500,
|
170 |
+
)
|
171 |
+
perspectives_response = client.chat.completions.create(
|
172 |
+
model="gpt-4o",
|
173 |
+
messages=[{"role": "user", "content": perspectives_prompt}],
|
174 |
+
max_tokens=500,
|
175 |
+
)
|
176 |
|
177 |
+
summary = summary_response.choices[0].message.content.strip()
|
178 |
+
perspectives = perspectives_response.choices[0].message.content.strip()
|
179 |
|
180 |
+
return rendered_content, summary, perspectives
|
181 |
+
except Exception as e:
|
182 |
+
return f"Error fetching or processing content: {str(e)}", "", ""
|
183 |
|
|
|
184 |
|
185 |
+
# In[31]:
|
|
|
186 |
|
|
|
187 |
|
188 |
+
# Function for chatbot interaction
|
189 |
+
def chat_with_ai(chat_history, user_input, content):
|
190 |
+
try:
|
191 |
+
messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
192 |
+
|
193 |
+
# Add chat history
|
194 |
+
for user, bot in chat_history:
|
195 |
+
messages.append({"role": "user", "content": user})
|
196 |
+
messages.append({"role": "assistant", "content": bot})
|
197 |
|
198 |
+
# Add user input with webpage content
|
199 |
+
messages.append({"role": "user", "content": f"Based on this content: {content}\n\n{user_input}"})
|
200 |
+
|
201 |
+
# Call OpenAI API
|
202 |
+
ai_response = client.chat.completions.create(
|
203 |
+
model="gpt-4o",
|
204 |
+
messages=messages,
|
205 |
+
max_tokens=300,
|
206 |
+
)
|
207 |
+
reply = ai_response.choices[0].message.content.strip()
|
208 |
+
chat_history.append((user_input, reply))
|
209 |
+
return chat_history
|
210 |
+
except Exception as e:
|
211 |
+
return chat_history + [(user_input, f"Error: {str(e)}")]
|
212 |
+
|
213 |
+
|
214 |
+
# In[32]:
|
215 |
+
|
216 |
+
|
217 |
+
def generate_reflection(chat_history):
|
218 |
+
"""
|
219 |
+
Generate a reflection based on the chat history.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
chat_history (list of tuples): List of (user_input, ai_reply) pairs.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
str: A reflective summary generated by AI.
|
226 |
+
"""
|
227 |
+
try:
|
228 |
+
messages = [{"role": "system", "content": "You are a professional content summarizer. Generate thoughtful reflections."}]
|
229 |
+
|
230 |
+
# Add conversation to messages
|
231 |
+
for user, bot in chat_history:
|
232 |
+
messages.append({"role": "user", "content": user})
|
233 |
+
messages.append({"role": "assistant", "content": bot})
|
234 |
+
|
235 |
+
# Prompt for reflection
|
236 |
+
messages.append({"role": "user", "content": "Please provide a concise, reflective summary of this conversation."})
|
237 |
+
|
238 |
+
# Call OpenAI API
|
239 |
+
ai_response = client.chat.completions.create(
|
240 |
+
model="gpt-4o",
|
241 |
+
messages=messages,
|
242 |
+
max_tokens=200,
|
243 |
+
)
|
244 |
+
reflection = ai_response.choices[0].message.content.strip()
|
245 |
+
return reflection
|
246 |
+
except Exception as e:
|
247 |
+
return f"Error generating reflection: {str(e)}"
|
248 |
+
|
249 |
+
|
250 |
+
# In[33]:
|
251 |
+
|
252 |
+
|
253 |
+
import requests
|
254 |
+
|
255 |
+
def post_to_linkedin(access_token, reflection, visibility="PUBLIC"):
|
256 |
+
"""
|
257 |
+
Post a reflection to LinkedIn.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
access_token (str): LinkedIn API access token.
|
261 |
+
reflection (str): The content to post.
|
262 |
+
visibility (str): Visibility setting ("PUBLIC" or "CONNECTIONS"). Defaults to "PUBLIC".
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
str: Confirmation or error message.
|
266 |
+
"""
|
267 |
+
try:
|
268 |
+
url = "https://api.linkedin.com/v2/ugcPosts"
|
269 |
+
headers = {
|
270 |
+
"Authorization": f"Bearer {access_token}",
|
271 |
+
"Content-Type": "application/json",
|
272 |
+
}
|
273 |
+
your_linkedin_person_id = 'jay'
|
274 |
+
payload = {
|
275 |
+
"author": f"urn:li:person:{your_linkedin_person_id}", # Replace with your LinkedIn person URN
|
276 |
+
"lifecycleState": "PUBLISHED",
|
277 |
+
"visibility": {"com.linkedin.ugc.MemberNetworkVisibility": visibility},
|
278 |
+
"specificContent": {
|
279 |
+
"com.linkedin.ugc.ShareContent": {
|
280 |
+
"shareCommentary": {
|
281 |
+
"text": reflection
|
282 |
+
},
|
283 |
+
"shareMediaCategory": "NONE"
|
284 |
+
}
|
285 |
+
}
|
286 |
+
}
|
287 |
+
|
288 |
+
response = requests.post(url, headers=headers, json=payload)
|
289 |
+
if response.status_code == 201:
|
290 |
+
return "Reflection successfully posted to LinkedIn!"
|
291 |
+
else:
|
292 |
+
return f"Failed to post to LinkedIn. Error: {response.json()}"
|
293 |
+
except Exception as e:
|
294 |
+
return f"Error posting to LinkedIn: {str(e)}"
|
295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
# In[34]:
|
298 |
|
|
|
|
|
299 |
|
300 |
+
### Curify Ideas ###
|
301 |
+
ideas_db = []
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
def extract_ideas_from_text(text):
|
304 |
+
# Mock idea extraction
|
305 |
+
ideas = text.split(". ")
|
306 |
+
for idea in ideas:
|
307 |
+
if idea.strip():
|
308 |
+
ideas_db.append({"content": idea.strip(), "timestamp": datetime.now()})
|
309 |
+
return [idea["content"] for idea in ideas_db]
|
310 |
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
# In[35]:
|
|
|
|
|
313 |
|
314 |
|
315 |
+
### Curify Projects ###
|
316 |
+
def prepare_meeting(json_input):
|
317 |
+
try:
|
318 |
+
meetings = json.loads(json_input)
|
319 |
+
preparations = []
|
320 |
+
for meeting in meetings:
|
321 |
+
title = meeting.get("title", "No Title")
|
322 |
+
time = meeting.get("time", "No Time")
|
323 |
+
description = meeting.get("description", "No Description")
|
324 |
+
preparations.append(f"Meeting: {title}\nTime: {time}\nDetails: {description}")
|
325 |
+
return "\n\n".join(preparations)
|
326 |
+
except Exception as e:
|
327 |
+
return f"Error processing input: {e}"
|
328 |
|
329 |
|
330 |
+
# In[36]:
|
331 |
|
|
|
|
|
|
|
332 |
|
333 |
+
### Gradio Demo ###
|
334 |
+
with gr.Blocks() as demo:
|
335 |
+
gr.Markdown("## Curify: Unified AI Tools for Productivity")
|
|
|
|
|
336 |
|
337 |
+
with gr.Tab("Curify Digest"):
|
338 |
+
with gr.Row():
|
339 |
+
# Column 1: Webpage rendering
|
340 |
+
with gr.Column():
|
341 |
+
gr.Markdown("## Render Webpage")
|
342 |
+
url_input = gr.Textbox(label="Enter URL")
|
343 |
+
# Shared Button: Fetch content, show webpage, and summary/perspectives
|
344 |
+
fetch_btn = gr.Button("Fetch and Process Webpage")
|
345 |
+
text_output = gr.Textbox(label="Webpage Content", lines=7)
|
346 |
+
# Column 2: Summary and Perspectives
|
347 |
+
with gr.Column():
|
348 |
+
gr.Markdown("## Summary & Perspectives")
|
349 |
+
summary_output = gr.Textbox(label="Summary", lines=5)
|
350 |
+
perspectives_output = gr.Textbox(label="Perspectives", lines=5)
|
351 |
+
|
352 |
+
# Column 3: Chatbot
|
353 |
+
with gr.Column():
|
354 |
+
gr.Markdown("## Interactive Chatbot")
|
355 |
+
chatbot_history_gr = gr.Chatbot(label="Chat History")
|
356 |
+
user_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
|
357 |
+
chatbot_btn = gr.Button("Send")
|
358 |
+
reflection_btn = gr.Button("Generate reflection")
|
359 |
+
reflection_output = gr.Textbox(label="Reflections", lines=5)
|
360 |
+
|
361 |
+
fetch_btn.click(
|
362 |
+
process_webpage,
|
363 |
+
inputs=url_input,
|
364 |
+
outputs=[text_output, summary_output, perspectives_output],
|
365 |
+
)
|
366 |
|
367 |
+
chatbot_btn.click(
|
368 |
+
chat_with_ai,
|
369 |
+
inputs=[chatbot_history_gr, user_input, text_output],
|
370 |
+
outputs=chatbot_history_gr,
|
371 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
+
reflection_btn.click(
|
374 |
+
generate_reflection,
|
375 |
+
inputs=chatbot_history_gr,
|
376 |
+
outputs=reflection_output,
|
377 |
+
)
|
378 |
|
379 |
|
380 |
+
with gr.Tab("Curify Ideas"):
|
381 |
+
text_input = gr.Textbox(label="Enter text or ideas")
|
382 |
+
extracted_ideas = gr.Textbox(label="Extracted Ideas", interactive=False)
|
383 |
+
extract_button = gr.Button("Extract Ideas")
|
|
|
|
|
384 |
|
385 |
+
def process_ideas(text):
|
386 |
+
return ", ".join(extract_ideas_from_text(text))
|
|
|
|
|
387 |
|
388 |
+
extract_button.click(process_ideas, inputs=[text_input], outputs=[extracted_ideas])
|
|
|
|
|
389 |
|
390 |
+
with gr.Tab("Curify Projects"):
|
391 |
+
json_input = gr.Textbox(label="Enter meeting data (JSON format)")
|
392 |
+
prepared_meetings = gr.Textbox(label="Meeting Preparations", interactive=False)
|
393 |
+
prepare_button = gr.Button("Prepare Meetings")
|
394 |
|
395 |
+
prepare_button.click(prepare_meeting, inputs=[json_input], outputs=[prepared_meetings])
|
|
|
396 |
|
397 |
+
demo.launch(share=True)
|
398 |
+
|
399 |
+
|
400 |
+
# In[ ]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|