qqwjq1981 commited on
Commit
6c19f60
·
verified ·
1 Parent(s): 7b7ca24

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1241 -9
app.py CHANGED
@@ -1,16 +1,1248 @@
1
- from fastapi import FastAPI, Request
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import uvicorn
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- # Initialize FastAPI app
5
  app = FastAPI()
6
 
7
- # FastAPI route to handle WhatsApp webhook
8
- @app.post("/whatsapp-webhook")
 
 
 
9
  async def whatsapp_webhook(request: Request):
10
- data = await request.json() # Parse incoming JSON data
11
- print(f"Received data: {data}") # Log incoming data for debugging
12
- return {"status": "success", "received_data": data}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- # Run the FastAPI app with Uvicorn
15
  if __name__ == "__main__":
16
- uvicorn.run(app, host="0.0.0.0", port=7860)
 
 
1
+ # from fastapi import FastAPI, Request
2
+ # import uvicorn
3
+
4
+ # # Initialize FastAPI app
5
+ # app = FastAPI()
6
+
7
+ # # FastAPI route to handle WhatsApp webhook
8
+ # @app.post("/whatsapp-webhook")
9
+ # async def whatsapp_webhook(request: Request):
10
+ # data = await request.json() # Parse incoming JSON data
11
+ # print(f"Received data: {data}") # Log incoming data for debugging
12
+ # return {"status": "success", "received_data": data}
13
+
14
+ # # Run the FastAPI app with Uvicorn
15
+ # if __name__ == "__main__":
16
+ # uvicorn.run(app, host="0.0.0.0", port=7860)
17
+
18
+ #!/usr/bin/env python
19
+ # coding: utf-8
20
+
21
+
22
+ # In[2]:
23
+
24
+
25
+ #pip install evernote-sdk-python3
26
+ # import evernote.edam.notestore.NoteStore as NoteStore
27
+ # import evernote.edam.type.ttypes as Types
28
+ # from evernote.api.client import EvernoteClient
29
+
30
+
31
+ # In[3]:
32
+
33
+
34
+ import os
35
+ import yaml
36
+ import pandas as pd
37
+ import numpy as np
38
+
39
+ from datetime import datetime, timedelta
40
+
41
+ # perspective generation
42
+ import openai
43
+ import os
44
+ from openai import OpenAI
45
+
46
+ import gradio as gr
47
+
48
+ import json
49
+
50
+ import sqlite3
51
+ import uuid
52
+ import socket
53
+ import difflib
54
+ import time
55
+ import shutil
56
+ import requests
57
+ import re
58
+
59
+ import json
60
+ import markdown
61
+ from fpdf import FPDF
62
+ import hashlib
63
+
64
+ from transformers import pipeline
65
+ from transformers.pipelines.audio_utils import ffmpeg_read
66
+
67
+ from todoist_api_python.api import TodoistAPI
68
+
69
+ # from flask import Flask, request, jsonify
70
+ from twilio.rest import Client
71
+
72
+ import asyncio
73
  import uvicorn
74
+ import fastapi
75
+ from fastapi import FastAPI, Request, HTTPException
76
+ from fastapi.responses import HTMLResponse, JSONResponse, RedirectResponse
77
+ from fastapi.staticfiles import StaticFiles
78
+ from pathlib import Path
79
+
80
+ import nest_asyncio
81
+ from twilio.twiml.messaging_response import MessagingResponse
82
+
83
+ from requests.auth import HTTPBasicAuth
84
+
85
+ from google.cloud import storage, exceptions # Import exceptions for error handling
86
+ from google.cloud.exceptions import NotFound
87
+ from google.oauth2 import service_account
88
+
89
+ from reportlab.pdfgen import canvas
90
+ from reportlab.lib.pagesizes import letter
91
+ from reportlab.pdfbase import pdfmetrics
92
+ from reportlab.lib import colors
93
+ from reportlab.pdfbase.ttfonts import TTFont
94
+
95
+ import logging
96
+
97
+ # Configure logging
98
+ logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
99
+ logger = logging.getLogger(__name__)
100
+
101
+
102
+ # In[4]:
103
+
104
+ # Access the API keys and other configuration data
105
+ openai_api_key = os.environ["OPENAI_API_KEY"]
106
+ # Access the API keys and other configuration data
107
+ todoist_api_key = os.environ["TODOIST_API_KEY"]
108
+
109
+ EVERNOTE_API_TOKEN = os.environ["EVERNOTE_API_TOKEN"]
110
+
111
+ account_sid = os.environ["TWILLO_ACCOUNT_SID"]
112
+ auth_token = os.environ["TWILLO_AUTH_TOKEN"]
113
+ twilio_phone_number = os.environ["TWILLO_PHONE_NUMBER"]
114
+
115
+ google_credentials_json = os.environ["GOOGLE_APPLICATION_CREDENTIALS"]
116
+ twillo_client = Client(account_sid, auth_token)
117
+
118
+ # Set the GOOGLE_APPLICATION_CREDENTIALS environment variable
119
+
120
+ # Load Reasoning Graph JSON File
121
+ def load_reasoning_json(filepath):
122
+ """Load JSON file and return the dictionary."""
123
+ with open(filepath, "r") as file:
124
+ data = json.load(file)
125
+ return data
126
+
127
+ # Load Action Map
128
+ def load_action_map(filepath):
129
+ """Load action map JSON file and map strings to actual function objects."""
130
+ with open(filepath, "r") as file:
131
+ action_map_raw = json.load(file)
132
+ # Map string names to actual functions using globals()
133
+ return {action: globals()[func_name] for action, func_name in action_map_raw.items()}
134
+
135
+
136
+ # In[5]:
137
+
138
+
139
+ # Define all actions as functions
140
+
141
+ def find_reference(task_topic):
142
+ """Finds a reference related to the task topic."""
143
+ print(f"Finding reference for topic: {task_topic}")
144
+ return f"Reference found for topic: {task_topic}"
145
+
146
+ def generate_summary(reference):
147
+ """Generates a summary of the reference."""
148
+ print(f"Generating summary for reference: {reference}")
149
+ return f"Summary of {reference}"
150
+
151
+ def suggest_relevance(summary):
152
+ """Suggests how the summary relates to the project."""
153
+ print(f"Suggesting relevance of summary: {summary}")
154
+ return f"Relevance of {summary} suggested"
155
+
156
+ def tool_research(task_topic):
157
+ """Performs tool research and returns analysis."""
158
+ print("Performing tool research")
159
+ return "Tool analysis data"
160
+
161
+ def generate_comparison_table(tool_analysis):
162
+ """Generates a comparison table for a competitive tool."""
163
+ print(f"Generating comparison table for analysis: {tool_analysis}")
164
+ return f"Comparison table for {tool_analysis}"
165
+
166
+ def generate_integration_memo(tool_analysis):
167
+ """Generates an integration memo for a tool."""
168
+ print(f"Generating integration memo for analysis: {tool_analysis}")
169
+ return f"Integration memo for {tool_analysis}"
170
+
171
+ def analyze_issue(task_topic):
172
+ """Analyzes an issue and returns the analysis."""
173
+ print("Analyzing issue")
174
+ return "Issue analysis data"
175
+
176
+ def generate_issue_memo(issue_analysis):
177
+ """Generates an issue memo based on the analysis."""
178
+ print(f"Generating issue memo for analysis: {issue_analysis}")
179
+ return f"Issue memo for {issue_analysis}"
180
+
181
+ def list_ideas(task_topic):
182
+ """Lists potential ideas for brainstorming."""
183
+ print("Listing ideas")
184
+ return ["Idea 1", "Idea 2", "Idea 3"]
185
+
186
+ def construct_matrix(ideas):
187
+ """Constructs a matrix (e.g., feasibility or impact/effort) for the ideas."""
188
+ print(f"Constructing matrix for ideas: {ideas}")
189
+ return {"Idea 1": "High Impact/Low Effort", "Idea 2": "Low Impact/High Effort", "Idea 3": "High Impact/High Effort"}
190
+
191
+ def prioritize_ideas(matrix):
192
+ """Prioritizes ideas based on the matrix."""
193
+ print(f"Prioritizing ideas based on matrix: {matrix}")
194
+ return ["Idea 3", "Idea 1", "Idea 2"]
195
+
196
+ def setup_action_plan(prioritized_ideas):
197
+ """Sets up an action plan based on the prioritized ideas."""
198
+ print(f"Setting up action plan for ideas: {prioritized_ideas}")
199
+ return f"Action plan created for {prioritized_ideas}"
200
+
201
+ def unsupported_task(task_topic):
202
+ """Handles unsupported tasks."""
203
+ print("Task not supported")
204
+ return "Unsupported task"
205
+
206
+
207
+ # In[6]:
208
+
209
+
210
+ todoist_api = TodoistAPI(todoist_api_key)
211
+
212
+ # Fetch recent Todoist task
213
+ def fetch_todoist_task():
214
+ try:
215
+ tasks = todoist_api.get_tasks()
216
+ if tasks:
217
+ recent_task = tasks[0] # Fetch the most recent task
218
+ return f"Recent Task: {recent_task.content}"
219
+ return "No tasks found in Todoist."
220
+ except Exception as e:
221
+ return f"Error fetching tasks: {str(e)}"
222
+
223
+ def add_to_todoist(task_topic, todoist_priority = 3):
224
+ try:
225
+ # Create a task in Todoist using the Todoist API
226
+ # Assuming you have a function `todoist_api.add_task()` that handles the API request
227
+ todoist_api.add_task(
228
+ content=task_topic,
229
+ priority=todoist_priority
230
+ )
231
+ msg = f"Task added: {task_topic} with priority {todoist_priority}"
232
+ logger.debug(msg)
233
+
234
+ return msg
235
+ except Exception as e:
236
+ # Return an error message if something goes wrong
237
+ return f"An error occurred: {e}"
238
+
239
+ # def save_todo(reasoning_steps):
240
+ # """
241
+ # Save reasoning steps to Todoist as tasks.
242
+
243
+ # Args:
244
+ # reasoning_steps (list of dict): A list of steps with "step" and "priority" keys.
245
+ # """
246
+ # try:
247
+ # # Validate that reasoning_steps is a list
248
+ # if not isinstance(reasoning_steps, list):
249
+ # raise ValueError("The input reasoning_steps must be a list.")
250
+
251
+ # # Iterate over the reasoning steps
252
+ # for step in reasoning_steps:
253
+ # # Ensure each step is a dictionary and contains required keys
254
+ # if not isinstance(step, dict) or "step" not in step or "priority" not in step:
255
+ # logger.error(f"Invalid step data: {step}, skipping.")
256
+ # continue
257
+
258
+ # task_content = step["step"]
259
+ # priority_level = step["priority"]
260
+
261
+ # # Map priority to Todoist's priority levels (1 - low, 4 - high)
262
+ # priority_mapping = {"Low": 1, "Medium": 2, "High": 4}
263
+ # todoist_priority = priority_mapping.get(priority_level, 1) # Default to low if not found
264
+
265
+ # # Create a task in Todoist using the Todoist API
266
+ # # Assuming you have a function `todoist_api.add_task()` that handles the API request
267
+ # todoist_api.add_task(
268
+ # content=task_content,
269
+ # priority=todoist_priority
270
+ # )
271
+
272
+ # logger.debug(f"Task added: {task_content} with priority {priority_level}")
273
+
274
+ # return "All tasks processed."
275
+ # except Exception as e:
276
+ # # Return an error message if something goes wrong
277
+ # return f"An error occurred: {e}"
278
+
279
+
280
+ # In[7]:
281
+
282
+
283
+ # evernote_client = EvernoteClient(token=EVERNOTE_API_TOKEN, sandbox=False)
284
+ # note_store = evernote_client.get_note_store()
285
+
286
+ # def add_to_evernote(task_topic, notebook_title="Inspirations"):
287
+ # """
288
+ # Add a task topic to the 'Inspirations' notebook in Evernote. If the notebook doesn't exist, create it.
289
+
290
+ # Args:
291
+ # task_topic (str): The content of the task to be added.
292
+ # notebook_title (str): The title of the Evernote notebook. Default is 'Inspirations'.
293
+ # """
294
+ # try:
295
+ # # Check if the notebook exists
296
+ # notebooks = note_store.listNotebooks()
297
+ # notebook = next((nb for nb in notebooks if nb.name == notebook_title), None)
298
+
299
+ # # If the notebook doesn't exist, create it
300
+ # if not notebook:
301
+ # notebook = Types.Notebook()
302
+ # notebook.name = notebook_title
303
+ # notebook = note_store.createNotebook(notebook)
304
+
305
+ # # Search for an existing note with the same title
306
+ # filter = NoteStore.NoteFilter()
307
+ # filter.notebookGuid = notebook.guid
308
+ # filter.words = notebook_title
309
+ # notes_metadata_result = note_store.findNotesMetadata(filter, 0, 1, NoteStore.NotesMetadataResultSpec(includeTitle=True))
310
+
311
+ # # If a note with the title exists, append to it; otherwise, create a new note
312
+ # if notes_metadata_result.notes:
313
+ # note_guid = notes_metadata_result.notes[0].guid
314
+ # existing_note = note_store.getNote(note_guid, True, False, False, False)
315
+ # existing_note.content = existing_note.content.replace("</en-note>", f"<div>{task_topic}</div></en-note>")
316
+ # note_store.updateNote(existing_note)
317
+ # else:
318
+ # # Create a new note
319
+ # note = Types.Note()
320
+ # note.title = notebook_title
321
+ # note.notebookGuid = notebook.guid
322
+ # note.content = f'<?xml version="1.0" encoding="UTF-8"?>' \
323
+ # f'<!DOCTYPE en-note SYSTEM "http://xml.evernote.com/pub/enml2.dtd">' \
324
+ # f'<en-note><div>{task_topic}</div></en-note>'
325
+ # note_store.createNote(note)
326
+
327
+ # print(f"Task '{task_topic}' successfully added to Evernote under '{notebook_title}'.")
328
+ # except Exception as e:
329
+ # print(f"Error adding task to Evernote: {e}")
330
+
331
+ # Mock Functions for Task Actions
332
+ def add_to_evernote(task_topic):
333
+ return f"Task added to Evernote with title '{task_topic}'."
334
+
335
+
336
+ # In[8]:
337
+
338
+
339
+ # Access the API keys and other configuration data
340
+ TASK_WORKFLOW_TREE = load_reasoning_json('curify_ideas_reasoning.json')
341
+ action_map = load_action_map('action_map.json')
342
+
343
+ # In[9]:
344
+
345
+
346
+ def generate_task_hash(task_description):
347
+ try:
348
+ # Ensure task_description is a string
349
+ if not isinstance(task_description, str):
350
+ logger.warning("task_description is not a string, attempting conversion.")
351
+ task_description = str(task_description)
352
+
353
+ # Safely encode with UTF-8 and ignore errors
354
+ encoded_description = task_description.encode("utf-8", errors="ignore")
355
+ task_hash = hashlib.md5(encoded_description).hexdigest()
356
+
357
+ logger.debug(f"Generated task hash: {task_hash}")
358
+ return task_hash
359
+ except Exception as e:
360
+ # Log any unexpected issues
361
+ logger.error(f"Error generating task hash: {e}", exc_info=True)
362
+ return 'output'
363
+
364
+ def save_to_google_storage(bucket_name, file_path, destination_blob_name, expiration_minutes = 1440):
365
+ credentials_dict = json.loads(google_credentials_json)
366
+
367
+ # Step 3: Use `service_account.Credentials.from_service_account_info` to authenticate directly with the JSON
368
+ credentials = service_account.Credentials.from_service_account_info(credentials_dict)
369
+ gcs_client = storage.Client(credentials=credentials, project=credentials.project_id)
370
+
371
+ # Check if the bucket exists; if not, create it
372
+ try:
373
+ bucket = gcs_client.get_bucket(bucket_name)
374
+ except NotFound:
375
+ print(f"❌ Bucket '{bucket_name}' not found. Please check the bucket name.")
376
+ bucket = gcs_client.create_bucket(bucket_name)
377
+ print(f"✅ Bucket '{bucket_name}' created.")
378
+ except Exception as e:
379
+ print(f"❌ An unexpected error occurred: {e}")
380
+ raise
381
+ # Get a reference to the blob
382
+ blob = bucket.blob(destination_blob_name)
383
+
384
+ # Upload the file
385
+ blob.upload_from_filename(file_path)
386
+
387
+ # Generate a signed URL for the file
388
+ signed_url = blob.generate_signed_url(
389
+ version="v4",
390
+ expiration=timedelta(minutes=expiration_minutes),
391
+ method="GET"
392
+ )
393
+ print(f"✅ File uploaded to Google Cloud Storage. Signed URL: {signed_url}")
394
+ return signed_url
395
+
396
+
397
+ # Function to check if content is Simplified Chinese
398
+ def is_simplified(text):
399
+ simplified_range = re.compile('[\u4e00-\u9fff]') # Han characters in general
400
+ simplified_characters = [char for char in text if simplified_range.match(char)]
401
+ return len(simplified_characters) > len(text) * 0.5 # Threshold of 50% to be considered simplified
402
+
403
+ # Function to choose the appropriate font for the content
404
+ def choose_font_for_content(content):
405
+ return 'NotoSansSC' if is_simplified(content) else 'NotoSansTC'
406
+
407
+ # Function to generate and save a document using ReportLab
408
+ def generate_document(task_description, md_content, user_name='jayw', bucket_name='curify'):
409
+ logger.debug("Starting to generate document")
410
+
411
+ # Hash the task description to generate a unique filename
412
+ task_hash = generate_task_hash(task_description)
413
+
414
+ # Truncate the hash if needed (64 characters is sufficient for uniqueness)
415
+ max_hash_length = 64 # Adjust if needed
416
+ truncated_hash = task_hash[:max_hash_length]
417
+
418
+ # Generate PDF file locally
419
+ local_filename = f"{truncated_hash}.pdf" # Use the truncated hash as the local file name
420
+ c = canvas.Canvas(local_filename, pagesize=letter)
421
+
422
+ # Paths to the TTF fonts for Simplified and Traditional Chinese
423
+ sc_font_path = 'NotoSansSC-Regular.ttf' # Path to Simplified Chinese font
424
+ tc_font_path = 'NotoSansTC-Regular.ttf' # Path to Traditional Chinese font
425
+
426
+ try:
427
+ # Register the Simplified Chinese font
428
+ sc_font = TTFont('NotoSansSC', sc_font_path)
429
+ pdfmetrics.registerFont(sc_font)
430
+
431
+ # Register the Traditional Chinese font
432
+ tc_font = TTFont('NotoSansTC', tc_font_path)
433
+ pdfmetrics.registerFont(tc_font)
434
+
435
+ # Set default font (Simplified Chinese or Traditional Chinese depending on content)
436
+ c.setFont('NotoSansSC', 12)
437
+ except Exception as e:
438
+ logger.error(f"Error loading font files: {e}")
439
+ raise RuntimeError("Failed to load one or more fonts. Ensure the font files are accessible.")
440
+
441
+ # Set initial Y position for drawing text
442
+ y_position = 750 # Starting position for text
443
+
444
+ # Process dictionary and render content
445
+ for key, value in md_content.items():
446
+ # Choose the font based on the key (header)
447
+ c.setFont(choose_font_for_content(key), 14)
448
+ c.drawString(100, y_position, f"# {key}")
449
+ y_position -= 20
450
+
451
+ # Choose the font for the value
452
+ c.setFont(choose_font_for_content(str(value)), 12)
453
+
454
+ # Add value
455
+ if isinstance(value, list): # Handle lists
456
+ for item in value:
457
+ c.drawString(100, y_position, f"- {item}")
458
+ y_position -= 15
459
+ else: # Handle single strings
460
+ c.drawString(100, y_position, value)
461
+ y_position -= 15
462
+
463
+ # Check if the page needs to be broken (if Y position is too low)
464
+ if y_position < 100:
465
+ c.showPage() # Create a new page
466
+ c.setFont('NotoSansSC', 12) # Reset font
467
+ y_position = 750 # Reset the Y position for the new page
468
+
469
+ # Save the PDF
470
+ c.save()
471
+
472
+ # Organize files into user-specific folders
473
+ destination_blob_name = f"{user_name}/{truncated_hash}.pdf"
474
+
475
+ # Upload to Google Cloud Storage and get the public URL
476
+ public_url = save_to_google_storage(bucket_name, local_filename, destination_blob_name)
477
+ logger.debug("Finished generating document")
478
+ return public_url
479
+
480
+ # In[10]:
481
+
482
+
483
+ def execute_with_retry(sql, params=(), attempts=5, delay=1, db_name = 'curify_ideas.db'):
484
+ for attempt in range(attempts):
485
+ try:
486
+ with sqlite3.connect(db_name) as conn:
487
+ cursor = conn.cursor()
488
+ cursor.execute(sql, params)
489
+ conn.commit()
490
+ break
491
+ except sqlite3.OperationalError as e:
492
+ if "database is locked" in str(e) and attempt < attempts - 1:
493
+ time.sleep(delay)
494
+ else:
495
+ raise e
496
+
497
+ # def enable_wal_mode(db_name = 'curify_ideas.db'):
498
+ # with sqlite3.connect(db_name) as conn:
499
+ # cursor = conn.cursor()
500
+ # cursor.execute("PRAGMA journal_mode=WAL;")
501
+ # conn.commit()
502
+
503
+ # # Create SQLite DB and table
504
+ # def create_db(db_name = 'curify_ideas.db'):
505
+ # with sqlite3.connect(db_name, timeout=30) as conn:
506
+ # c = conn.cursor()
507
+ # c.execute('''CREATE TABLE IF NOT EXISTS sessions (
508
+ # session_id TEXT,
509
+ # ip_address TEXT,
510
+ # project_desc TEXT,
511
+ # idea_desc TEXT,
512
+ # idea_analysis TEXT,
513
+ # prioritization_steps TEXT,
514
+ # timestamp DATETIME,
515
+ # PRIMARY KEY (session_id, timestamp)
516
+ # )
517
+ # ''')
518
+ # conn.commit()
519
+
520
+ # # Function to insert session data into the SQLite database
521
+ # def insert_session_data(session_id, ip_address, project_desc, idea_desc, idea_analysis, prioritization_steps, db_name = 'curify_ideas.db'):
522
+ # execute_with_retry('''
523
+ # INSERT INTO sessions (session_id, ip_address, project_desc, idea_desc, idea_analysis, prioritization_steps, timestamp)
524
+ # VALUES (?, ?, ?, ?, ?, ?, ?)
525
+ # ''', (session_id, ip_address, project_desc, idea_desc, json.dumps(idea_analysis), json.dumps(prioritization_steps), datetime.now()), db_name)
526
+
527
+
528
+ # In[11]:
529
+
530
+
531
+ def convert_to_listed_json(input_string):
532
+ """
533
+ Converts a string to a listed JSON object.
534
+
535
+ Parameters:
536
+ input_string (str): The JSON-like string to be converted.
537
+
538
+ Returns:
539
+ list: A JSON object parsed into a Python list of dictionaries.
540
+ """
541
+ try:
542
+ # Parse the string into a Python object
543
+ trimmed_string = input_string[input_string.index('['):input_string.rindex(']') + 1]
544
+
545
+ json_object = json.loads(trimmed_string)
546
+ return json_object
547
+ except json.JSONDecodeError as e:
548
+ return None
549
+ return None
550
+ #raise ValueError(f"Invalid JSON format: {e}")
551
+
552
+ def validate_and_extract_json(json_string):
553
+ """
554
+ Validates the JSON string, extracts fields with possible variants using fuzzy matching.
555
+
556
+ Args:
557
+ - json_string (str): The JSON string to validate and extract from.
558
+ - field_names (list): List of field names to extract, with possible variants.
559
+
560
+ Returns:
561
+ - dict: Extracted values with the best matched field names.
562
+ """
563
+ # Try to parse the JSON string
564
+ trimmed_string = json_string[json_string.index('{'):json_string.rindex('}') + 1]
565
+ try:
566
+ parsed_json = json.loads(trimmed_string)
567
+ return parsed_json
568
+ except json.JSONDecodeError as e:
569
+ return None
570
+
571
+ # {"error": "Parsed JSON is not a dictionary."}
572
+ return None
573
+
574
+ def json_to_pandas(dat_json, dat_schema = {'name':"", 'description':""}):
575
+ dat_df = pd.DataFrame([dat_schema])
576
+ try:
577
+ dat_df = pd.DataFrame(dat_json)
578
+
579
+ except Exception as e:
580
+ dat_df = pd.DataFrame([dat_schema])
581
+ # ValueError(f"Failed to parse LLM output as JSON: {e}\nOutput: {res}")
582
+ return dat_df
583
+
584
+
585
+ # In[12]:
586
+
587
+
588
+ client = OpenAI(
589
+ api_key= os.environ.get("OPENAI_API_KEY"), # This is the default and can be omitted
590
+ )
591
+
592
+ # Function to call OpenAI API with compact error handling
593
+ def call_openai_api(prompt, model="gpt-4o", max_tokens=5000, retries=3, backoff_factor=2):
594
+ """
595
+ Send a prompt to the OpenAI API and handle potential errors robustly.
596
+
597
+ Parameters:
598
+ prompt (str): The user input or task prompt to send to the model.
599
+ model (str): The OpenAI model to use (default is "gpt-4").
600
+ max_tokens (int): The maximum number of tokens in the response.
601
+ retries (int): Number of retry attempts in case of transient errors.
602
+ backoff_factor (int): Backoff time multiplier for retries.
603
+
604
+ Returns:
605
+ str: The model's response content if successful.
606
+ """
607
+ for attempt in range(1, retries + 1):
608
+ try:
609
+ response = client.chat.completions.create(
610
+ model="gpt-4o",
611
+ messages=[{"role": "user", "content": prompt}],
612
+ max_tokens=5000,
613
+ )
614
+ return response.choices[0].message.content.strip()
615
+
616
+ except (openai.RateLimitError, openai.APIConnectionError) as e:
617
+ logging.warning(f"Transient error: {e}. Attempt {attempt} of {retries}. Retrying...")
618
+ except (openai.BadRequestError, openai.AuthenticationError) as e:
619
+ logging.error(f"Unrecoverable error: {e}. Check your inputs or API key.")
620
+ break
621
+ except Exception as e:
622
+ logging.error(f"Unexpected error: {e}. Attempt {attempt} of {retries}. Retrying...")
623
+
624
+ # Exponential backoff before retrying
625
+ if attempt < retries:
626
+ time.sleep(backoff_factor * attempt)
627
+
628
+ raise RuntimeError(f"Failed to fetch response from OpenAI API after {retries} attempts.")
629
+
630
+ def fn_analyze_task(project_context, task_description):
631
+ prompt = (
632
+ f"You are working in the context of {project_context}. "
633
+ f"Your task is to analyze the task: {task_description} "
634
+ "Please analyze the following aspects: "
635
+ "1) Determine which project this item belongs to. If the idea does not belong to any existing project, categorize it under 'Other'. "
636
+ "2) Assess whether this idea can be treated as a concrete task. "
637
+ "3) Evaluate whether a document can be generated as an intermediate result. "
638
+ "4) Identify the appropriate category of the task. Possible categories are: 'Blogs/Papers', 'Tools', 'Brainstorming', 'Issues', and 'Others'. "
639
+ "5) Extract the topic of the task. "
640
+ "Please provide the output in JSON format using the structure below: "
641
+ "{"
642
+ " \"description\": \"\", "
643
+ " \"project_association\": \"\", "
644
+ " \"is_task\": \"Yes/No\", "
645
+ " \"is_document\": \"Yes/No\", "
646
+ " \"task_category\": \"\", "
647
+ " \"task_topic\": \"\" "
648
+ "}"
649
+ )
650
+ res_task_analysis = call_openai_api(prompt)
651
+
652
+ try:
653
+ json_task_analysis = validate_and_extract_json(res_task_analysis)
654
+
655
+ return json_task_analysis
656
+ except ValueError as e:
657
+ logger.debug("ValueError occurred: %s", str(e), exc_info=True) # Log the exception details
658
+ return None
659
+
660
+
661
+ # In[13]:
662
+
663
+ # Recursive Task Executor
664
+ def fn_process_task(project_desc_table, task_description, bucket_name='curify'):
665
+
666
+ project_context = project_desc_table.to_string(index=False)
667
+ task_analysis = fn_analyze_task(project_context, task_description)
668
+
669
+ if task_analysis:
670
+ execution_status = []
671
+ execution_results = task_analysis.copy()
672
+ execution_results['deliverables'] = ''
673
+
674
+ def traverse(node, previous_output=None):
675
+ if not node: # If the node is None or invalid
676
+ return # Exit if the node is invalid
677
+
678
+ # Check if there is a condition to evaluate
679
+ if "check" in node:
680
+ # Safely attempt to retrieve the value from execution_results
681
+ if node["check"] in execution_results:
682
+ value = execution_results[node["check"]] # Evaluate the check condition
683
+ traverse(node.get(value, node.get("default")), previous_output)
684
+ else:
685
+ # Log an error and exit, but keep partial results
686
+ logger.error(f"Key '{node['check']}' not found in execution_results.")
687
+ return
688
+
689
+ # If the node contains an action
690
+ elif "action" in node:
691
+ action_name = node["action"]
692
+ input_key = node.get("input", 'task_topic')
693
+
694
+ if input_key in execution_results.keys():
695
+ inputs = {input_key: execution_results[input_key]}
696
+ else:
697
+ # Log an error and exit, but keep partial results
698
+ logger.error(f"Workflow action {action_name} input key {input_key} not in execution_results.")
699
+ return
700
+
701
+ logger.debug(f"Executing: {action_name} with inputs: {inputs}")
702
+
703
+ # Execute the action function
704
+ action_func = action_map.get(action_name, unsupported_task)
705
+ try:
706
+ output = action_func(**inputs)
707
+ except Exception as e:
708
+ # Handle action function failure
709
+ logger.error(f"Error executing action '{action_name}': {e}")
710
+ return
711
+
712
+ # Store execution results or append to previous outputs
713
+ execution_status.append({"action": action_name, "output": output})
714
+
715
+ # Check if 'output' field exists in the node
716
+ if 'output' in node:
717
+ # If 'output' exists, assign the output to execution_results with the key from node['output']
718
+ execution_results[node['output']] = output
719
+ else:
720
+ # If 'output' does not exist, append the output to 'deliverables'
721
+ execution_results['deliverables'] += output
722
+
723
+ # Traverse to the next node, if it exists
724
+ if "next" in node and node["next"]:
725
+ traverse(node["next"], previous_output)
726
+
727
+ try:
728
+ traverse(TASK_WORKFLOW_TREE["start"])
729
+ execution_results['doc_url'] = generate_document(task_description, execution_results)
730
+ except Exception as e:
731
+ logger.error(f"Traverse Error: {e}")
732
+ finally:
733
+ # Always return partial results, even if an error occurs
734
+ return task_analysis, pd.DataFrame(execution_status), execution_results
735
+ else:
736
+ logger.error("Empty task analysis.")
737
+ return {}, pd.DataFrame(), {}
738
+
739
+ # In[14]:
740
+
741
+
742
+ # Initialize dataframes for the schema
743
+ ideas_df = pd.DataFrame(columns=["Idea ID", "Content", "Tags"])
744
+
745
+ def extract_ideas(context, text):
746
+ """
747
+ Extract project ideas from text, with or without a context, and return in JSON format.
748
+
749
+ Parameters:
750
+ context (str): Context of the extraction. Can be empty.
751
+ text (str): Text to extract ideas from.
752
+
753
+ Returns:
754
+ list: A list of ideas, each represented as a dictionary with name and description.
755
+ """
756
+ if context:
757
+ # Template when context is provided
758
+ prompt = (
759
+ f"You are working in the context of {context}. "
760
+ "Please extract the ongoing projects with project name and description."
761
+ "Please only the listed JSON as output string."
762
+ f"Ongoing projects: {text}"
763
+ )
764
+ else:
765
+ # Template when context is not provided
766
+ prompt = (
767
+ "Given the following information about the user."
768
+ "Please extract the ongoing projects with project name and description."
769
+ "Please only the listed JSON as output string."
770
+ f"Ongoing projects: {text}"
771
+ )
772
+
773
+ # return the raw string
774
+ return call_openai_api(prompt)
775
+
776
+ def df_to_string(df, empty_message = ''):
777
+ """
778
+ Converts a DataFrame to a string if it is not empty.
779
+ If the DataFrame is empty, returns an empty string.
780
+
781
+ Parameters:
782
+ ideas_df (pd.DataFrame): The DataFrame to be converted.
783
+
784
+ Returns:
785
+ str: A string representation of the DataFrame or an empty string.
786
+ """
787
+ if df.empty:
788
+ return empty_message
789
+ else:
790
+ return df.to_string(index=False)
791
+
792
+
793
+ # In[15]:
794
+
795
+
796
+ # Shared state variables
797
+ shared_state = {"project_desc_table": pd.DataFrame(), "task_analysis_txt": "", "execution_status": pd.DataFrame(), "execution_results": {}}
798
+
799
+ # Button Action: Fetch State
800
+ def fetch_updated_state():
801
+ # Iterating and logging the shared state
802
+ for key, value in shared_state.items():
803
+ if isinstance(value, pd.DataFrame):
804
+ logger.debug(f"{key}: DataFrame:\n{value.to_string()}")
805
+ elif isinstance(value, dict):
806
+ logger.debug(f"{key}: Dictionary: {value}")
807
+ elif isinstance(value, str):
808
+ logger.debug(f"{key}: String: {value}")
809
+ else:
810
+ logger.debug(f"{key}: Unsupported type: {value}")
811
+ return shared_state['project_desc_table'], shared_state['task_analysis_txt'], shared_state['execution_status'], shared_state['execution_results']
812
+
813
+ # response = requests.get("http://localhost:5000/state")
814
+ # # Check the status code and the raw response
815
+ # if response.status_code == 200:
816
+ # try:
817
+ # state = response.json() # Try to parse JSON
818
+ # return pd.DataFrame(state["project_desc_table"]), state["task_analysis_txt"], pd.DataFrame(state["execution_status"]), state["execution_results"]
819
+ # except ValueError as e:
820
+ # logger.error(f"JSON decoding failed: {e}")
821
+ # logger.debug("Raw response body:", response.text)
822
+ # else:
823
+ # logger.error(f"Error: {response.status_code} - {response.text}")
824
+ # """Fetch the updated shared state from FastAPI."""
825
+ # return pd.DataFrame(), "", pd.DataFrame(), {}
826
+
827
+
828
+ def update_gradio_state(project_desc_table, task_analysis_txt, execution_status, execution_results):
829
+ # You can update specific components like Textbox or State
830
+ shared_state['project_desc_table'] = project_desc_table
831
+ shared_state['task_analysis_txt'] = task_analysis_txt
832
+ shared_state['execution_status'] = execution_status
833
+ shared_state['execution_results'] = execution_results
834
+ return True
835
+
836
+
837
+ # In[16]:
838
+
839
+
840
+ # # Initialize the database
841
+ # new_db = 'curify.db'
842
+
843
+ # # Copy the old database to a new one
844
+ # shutil.copy("curify_idea.db", new_db)
845
+
846
+ #create_db(new_db)
847
+ #enable_wal_mode(new_db)
848
+ def project_extraction(project_description):
849
+
850
+ str_projects = extract_ideas('AI-powered tools for productivity', project_description)
851
+ json_projects = convert_to_listed_json(str_projects)
852
+
853
+ project_desc_table = json_to_pandas(json_projects)
854
+ update_gradio_state(project_desc_table, "", pd.DataFrame(), {})
855
+ return project_desc_table
856
+
857
+
858
+ # In[17]:
859
+
860
+
861
+ # project_description = 'work on a number of projects including curify (digest, ideas, careers, projects etc), and writing a book on LLM for recommendation system, educating my 3.5-year-old boy and working on a paper for LLM reasoning.'
862
+
863
+ # # convert_to_listed_json(extract_ideas('AI-powered tools for productivity', project_description))
864
+
865
+ # task_description = 'Build an interview bot for the curify digest project.'
866
+ # task_analysis, reasoning_path = generate_reasoning_path(project_description, task_description)
867
+
868
+ # steps = store_and_execute_task(task_description, reasoning_path)
869
+
870
+ def message_back(task_message, execution_status, doc_url, from_whatsapp):
871
+ # Convert task steps to a simple numbered list
872
+ task_steps_list = "\n".join(
873
+ [f"{i + 1}. {step['action']} - {step.get('output', '')}" for i, step in enumerate(execution_status.to_dict(orient="records"))]
874
+ )
875
+
876
+ # Format the body message
877
+ body_message = (
878
+ f"*Task Message:*\n{task_message}\n\n"
879
+ f"*Execution Status:*\n{task_steps_list}\n\n"
880
+ f"*Doc URL:*\n{doc_url}\n\n"
881
+ )
882
+
883
+ # Send response back to WhatsApp
884
+ try:
885
+ twillo_client.messages.create(
886
+ from_=twilio_phone_number,
887
+ to=from_whatsapp,
888
+ body=body_message
889
+ )
890
+ except Exception as e:
891
+ logger.error(f"Twilio Error: {e}")
892
+ raise HTTPException(status_code=500, detail=f"Error sending WhatsApp message: {str(e)}")
893
+
894
+ return {"status": "success"}
895
+
896
+ # Initialize the Whisper pipeline
897
+ whisper_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
898
+
899
+ # Function to transcribe audio from a media URL
900
+ def transcribe_audio_from_media_url(media_url):
901
+ try:
902
+ media_response = requests.get(media_url, auth=HTTPBasicAuth(account_sid, auth_token))
903
+ # Download the media file
904
+ media_response.raise_for_status()
905
+ audio_data = media_response.content
906
+
907
+ # Save the audio data to a file for processing
908
+ audio_file_path = "temp_audio_file.mp3"
909
+ with open(audio_file_path, "wb") as audio_file:
910
+ audio_file.write(audio_data)
911
+
912
+ # Transcribe the audio using Whisper
913
+ transcription = whisper_pipeline(audio_file_path, return_timestamps=True)
914
+ logger.debug(f"Transcription: {transcription['text']}")
915
+ return transcription["text"]
916
+
917
+ except Exception as e:
918
+ logger.error(f"An error occurred: {e}")
919
+ return None
920
+
921
+
922
+ # In[18]:
923
+
924
 
 
925
  app = FastAPI()
926
 
927
+ @app.get("/state")
928
+ async def fetch_state():
929
+ return shared_state
930
+
931
+ @app.route("/whatsapp-webhook/", methods=["POST"])
932
  async def whatsapp_webhook(request: Request):
933
+ form_data = await request.form()
934
+ # Log the form data to debug
935
+ print("Received data:", form_data)
936
+
937
+ # Extract message and user information
938
+ incoming_msg = form_data.get("Body", "").strip()
939
+ from_number = form_data.get("From", "")
940
+ media_url = form_data.get("MediaUrl0", "")
941
+ media_type = form_data.get("MediaContentType0", "")
942
+
943
+ # Initialize response variables
944
+ transcription = None
945
+
946
+ if media_type.startswith("audio"):
947
+ # If the media is an audio or video file, process it
948
+ try:
949
+ transcription = transcribe_audio_from_media_url(media_url)
950
+ except Exception as e:
951
+ return JSONResponse(
952
+ {"error": f"Failed to process voice input: {str(e)}"}, status_code=500
953
+ )
954
+ # Determine message content: use transcription if available, otherwise use text message
955
+ processed_input = transcription if transcription else incoming_msg
956
+
957
+ logger.debug(f"Processed input: {processed_input}")
958
+
959
+ try:
960
+ # Generate response
961
+ project_desc_table, _ = fetch_updated_state()
962
+
963
+ # If the project_desc_table is empty, return an empty JSON response
964
+ if project_desc_table.empty:
965
+ return JSONResponse(content={}) # Returning an empty JSON object
966
+
967
+ # Continue processing if the table is not empty
968
+ task_analysis_txt, execution_status, execution_results = fn_process_task(project_desc_table, processed_input)
969
+ update_gradio_state(task_analysis_txt, execution_status, execution_results)
970
+
971
+ doc_url = 'Fail to generate doc'
972
+ if 'doc_url' in execution_results:
973
+ doc_url = execution_results['doc_url']
974
+
975
+ # Respond to the user on WhatsApp with the processed idea
976
+ response = message_back(processed_input, execution_status, doc_url, from_number)
977
+ logger.debug(response)
978
+
979
+ return JSONResponse(content=str(response))
980
+
981
+ except Exception as e:
982
+ logger.error(f"Error during task processing: {e}")
983
+ return JSONResponse(content={"error": str(e)}, status_code=500)
984
+
985
+ # In[19]:
986
+
987
+
988
+ # Mock Gmail Login Function
989
+ def mock_login(email):
990
+ if email.endswith("@gmail.com"):
991
+ return f"✅ Logged in as {email}", gr.update(visible=False), gr.update(visible=True)
992
+ else:
993
+ return "❌ Invalid Gmail address. Please try again.", gr.update(), gr.update()
994
+
995
+ # User Onboarding Function
996
+ def onboarding_survey(role, industry, project_description):
997
+ return (project_extraction(project_description),
998
+ gr.update(visible=False), gr.update(visible=True))
999
+
1000
+ # Mock Integration Functions
1001
+ def integrate_todoist():
1002
+ return "✅ Successfully connected to Todoist!"
1003
+
1004
+ def integrate_evernote():
1005
+ return "✅ Successfully connected to Evernote!"
1006
+
1007
+ def integrate_calendar():
1008
+ return "✅ Successfully connected to Google Calendar!"
1009
+
1010
+ def load_svg_with_size(file_path, width="600px", height="400px"):
1011
+ # Read the SVG content from the file
1012
+ with open(file_path, "r", encoding="utf-8") as file:
1013
+ svg_content = file.read()
1014
+
1015
+ # Add inline styles to control width and height
1016
+ styled_svg = f"""
1017
+ <div style="width: {width}; height: {height}; overflow: auto;">
1018
+ {svg_content}
1019
+ </div>
1020
+ """
1021
+ return styled_svg
1022
+
1023
+
1024
+ # In[20]:
1025
+
1026
+
1027
+ # Gradio Demo
1028
+ def create_gradio_interface(state=None):
1029
+ with gr.Blocks(
1030
+ css="""
1031
+ .gradio-table td {
1032
+ white-space: normal !important;
1033
+ word-wrap: break-word !important;
1034
+ }
1035
+ .gradio-table {
1036
+ width: 100% !important; /* Adjust to 100% to fit the container */
1037
+ table-layout: fixed !important; /* Fixed column widths */
1038
+ overflow-x: hidden !important; /* Disable horizontal scrolling */
1039
+ }
1040
+ .gradio-container {
1041
+ overflow-x: hidden !important; /* Disable horizontal scroll for entire container */
1042
+ padding: 0 !important; /* Remove any default padding */
1043
+ }
1044
+ .gradio-column {
1045
+ max-width: 100% !important; /* Ensure columns take up full width */
1046
+ overflow: hidden !important; /* Hide overflow to prevent horizontal scroll */
1047
+ }
1048
+ .gradio-row {
1049
+ overflow-x: hidden !important; /* Prevent horizontal scroll on rows */
1050
+ }
1051
+ """) as demo:
1052
+
1053
+ # Page 1: Mock Gmail Login
1054
+ with gr.Group(visible=True) as login_page:
1055
+ gr.Markdown("### **1️⃣ Login with Gmail**")
1056
+ email_input = gr.Textbox(label="Enter your Gmail Address", placeholder="[email protected]")
1057
+ login_button = gr.Button("Login")
1058
+ login_result = gr.Textbox(label="Login Status", interactive=False, visible=False)
1059
+ # Page 2: User Onboarding
1060
+ with gr.Group(visible=False) as onboarding_page:
1061
+ gr.Markdown("### **2️⃣ Tell Us About Yourself**")
1062
+ role = gr.Textbox(label="What is your role?", placeholder="e.g. Developer, Designer")
1063
+ industry = gr.Textbox(label="Which industry are you in?", placeholder="e.g. Software, Finance")
1064
+ project_description = gr.Textbox(label="Describe your project", placeholder="e.g. A task management app")
1065
+ submit_survey = gr.Button("Submit")
1066
+
1067
+ # Page 3: Mock Integrations with Separate Buttons
1068
+ with gr.Group(visible=False) as integrations_page:
1069
+ gr.Markdown("### **3️��� Connect Integrations**")
1070
+ gr.Markdown("Click on the buttons below to connect each tool:")
1071
+
1072
+ # Separate Buttons and Results for Each Integration
1073
+ todoist_button = gr.Button("Connect to Todoist")
1074
+ todoist_result = gr.Textbox(label="Todoist Status", interactive=False, visible=False)
1075
+
1076
+ evernote_button = gr.Button("Connect to Evernote")
1077
+ evernote_result = gr.Textbox(label="Evernote Status", interactive=False, visible=False)
1078
+
1079
+ calendar_button = gr.Button("Connect to Google Calendar")
1080
+ calendar_result = gr.Textbox(label="Google Calendar Status", interactive=False, visible=False)
1081
+
1082
+ # Skip Button to proceed directly to next page
1083
+ skip_integrations = gr.Button("Skip ➡️")
1084
+ next_button = gr.Button("Proceed to QR Code")
1085
+
1086
+ with gr.Group(visible=False) as qr_code_page:
1087
+ # Page 4: QR Code and Curify Ideas
1088
+ gr.Markdown("## Curify: Unified AI Tools for Productivity")
1089
+
1090
+ with gr.Tab("Curify Idea"):
1091
+ with gr.Row():
1092
+ with gr.Column():
1093
+ gr.Markdown("#### ** QR Code**")
1094
+ # Path to your local SVG file
1095
+ svg_file_path = "qr.svg"
1096
+ # Load the SVG content
1097
+ svg_content = load_svg_with_size(svg_file_path, width="200px", height="200px")
1098
+ gr.HTML(svg_content)
1099
+
1100
+ # Column 1: Webpage rendering
1101
+ with gr.Column():
1102
+
1103
+ gr.Markdown("## Projects Overview")
1104
+ project_desc_table = gr.DataFrame(
1105
+ type="pandas"
1106
+ )
1107
+
1108
+ gr.Markdown("## Enter task message.")
1109
+ idea_input = gr.Textbox(
1110
+ label=None,
1111
+ placeholder="Describe the task you want to execute (e.g., Research Paper Review)")
1112
+
1113
+ task_btn = gr.Button("Generate Task Steps")
1114
+ fetch_state_btn = gr.Button("Fetch Updated State")
1115
+
1116
+ with gr.Column():
1117
+ gr.Markdown("## Task analysis")
1118
+ task_analysis_txt = gr.Textbox(
1119
+ label=None,
1120
+ placeholder="Here is the execution status of your task...")
1121
+
1122
+ gr.Markdown("## Execution status")
1123
+ execution_status = gr.DataFrame(
1124
+ type="pandas"
1125
+ )
1126
+ gr.Markdown("## Execution output")
1127
+ execution_results = gr.JSON(
1128
+ label=None
1129
+ )
1130
+ state_output = gr.State() # Add a state output to hold the state
1131
+
1132
+ task_btn.click(
1133
+ fn_process_task,
1134
+ inputs=[project_desc_table, idea_input],
1135
+ outputs=[task_analysis_txt, execution_status, execution_results]
1136
+ )
1137
+
1138
+ fetch_state_btn.click(
1139
+ fetch_updated_state,
1140
+ inputs=None,
1141
+ outputs=[project_desc_table, task_analysis_txt, execution_status, execution_results]
1142
+ )
1143
+
1144
+ # Page 1 -> Page 2 Transition
1145
+ login_button.click(
1146
+ mock_login,
1147
+ inputs=email_input,
1148
+ outputs=[login_result, login_page, onboarding_page]
1149
+ )
1150
+
1151
+ # Page 2 -> Page 3 Transition (Submit and Skip)
1152
+ submit_survey.click(
1153
+ onboarding_survey,
1154
+ inputs=[role, industry, project_description],
1155
+ outputs=[project_desc_table, onboarding_page, integrations_page]
1156
+ )
1157
+
1158
+ # Integration Buttons
1159
+ todoist_button.click(integrate_todoist, outputs=todoist_result)
1160
+ evernote_button.click(integrate_evernote, outputs=evernote_result)
1161
+ calendar_button.click(integrate_calendar, outputs=calendar_result)
1162
+
1163
+ # Skip Integrations and Proceed
1164
+ skip_integrations.click(
1165
+ lambda: (gr.update(visible=False), gr.update(visible=True)),
1166
+ outputs=[integrations_page, qr_code_page]
1167
+ )
1168
+
1169
+ # # Set the load_fn to initialize the state when the page is loaded
1170
+ # demo.load(
1171
+ # curify_ideas,
1172
+ # inputs=[project_input, idea_input],
1173
+ # outputs=[task_steps, task_analysis_txt, state_output]
1174
+ # )
1175
+ return demo
1176
+ # Load function to initialize the state
1177
+ # demo.load(load_fn, inputs=None, outputs=[state]) # Initialize the state when the page is loaded
1178
+
1179
+ # Function to launch Gradio
1180
+ # def launch_gradio():
1181
+ # demo = create_gradio_interface()
1182
+ # demo.launch(share=True, inline=False) # Gradio in the foreground
1183
+
1184
+ # # Function to run FastAPI server using uvicorn in the background
1185
+ # async def run_fastapi():
1186
+ # config = uvicorn.Config(app, host="0.0.0.0", port=5000, reload=True, log_level="debug")
1187
+ # server = uvicorn.Server(config)
1188
+ # await server.serve()
1189
+
1190
+ # # FastAPI endpoint to display a message
1191
+ # @app.get("/", response_class=HTMLResponse)
1192
+ # async def index():
1193
+ # return "FastAPI is running. Visit Gradio at the provided public URL."
1194
+
1195
+ # # Main entry point for the asynchronous execution
1196
+ # async def main():
1197
+ # # Run Gradio in the foreground and FastAPI in the background
1198
+ # loop = asyncio.get_event_loop()
1199
+
1200
+ # # Run Gradio in a separate thread (non-blocking)
1201
+ # loop.run_in_executor(None, launch_gradio)
1202
+
1203
+ # # Run FastAPI in the background (asynchronous)
1204
+ # await run_fastapi()
1205
+
1206
+ # if __name__ == "__main__":
1207
+ # import nest_asyncio
1208
+ # nest_asyncio.apply() # Allow nested use of asyncio event loops in Jupyter notebooks
1209
+
1210
+ # # Run the main function to launch both services concurrently
1211
+ # asyncio.run(main())
1212
+
1213
+ # In[21]:
1214
+ demo = create_gradio_interface()
1215
+ # Use Gradio's `server_app` to get an ASGI app for Blocks
1216
+ gradio_asgi_app = demo.launch(share=False, inbrowser=False, server_name="0.0.0.0", server_port=7860, inline=False)
1217
+
1218
+ logging.debug(f"Gradio version: {gr.__version__}")
1219
+ logging.debug(f"FastAPI version: {fastapi.__version__}")
1220
+
1221
+ # # Mount the Gradio ASGI app at "/gradio"
1222
+ # app.mount("/gradio", gradio_asgi_app)
1223
+
1224
+ # # create a static directory to store the static files
1225
+ # static_dir = Path('./static')
1226
+ # static_dir.mkdir(parents=True, exist_ok=True)
1227
+
1228
+ # # mount FastAPI StaticFiles server
1229
+ # app.mount("/static", StaticFiles(directory=static_dir), name="static")
1230
+
1231
+ # Dynamically check for the Gradio asset directory
1232
+ # gradio_assets_path = os.path.join(os.path.dirname(gr.__file__), "static")
1233
+
1234
+ # if os.path.exists(gradio_assets_path):
1235
+ # # If assets exist, mount them
1236
+ # app.mount("/assets", StaticFiles(directory=gradio_assets_path), name="assets")
1237
+ # else:
1238
+ # logging.error(f"Gradio assets directory not found at: {gradio_assets_path}")
1239
+
1240
+ # Redirect from the root endpoint to the Gradio app
1241
+ @app.get("/", response_class=RedirectResponse)
1242
+ async def index():
1243
+ return RedirectResponse(url="/gradio", status_code=307)
1244
 
1245
+ # Run the FastAPI server using uvicorn
1246
  if __name__ == "__main__":
1247
+ # port = int(os.getenv("PORT", 5000)) # Default to 7860 if PORT is not set
1248
+ uvicorn.run(app, host="0.0.0.0", port=7860)