Kapamtalk / translator.py
Coco-18's picture
Update translator.py
5d62ccb verified
raw
history blame contribute delete
19.3 kB
# translator.py - Handles ASR, TTS, and translation tasks
import os
import sys
import logging
import traceback
import torch
import torchaudio
import tempfile
import soundfile as sf
from pydub import AudioSegment
from flask import jsonify
from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
from transformers import MarianMTModel, MarianTokenizer
# Configure logging
logger = logging.getLogger("speech_api")
# Global variables to store models and processors
asr_model = None
asr_processor = None
tts_models = {}
tts_processors = {}
translation_models = {}
translation_tokenizers = {}
# Language-specific configurations
LANGUAGE_CODES = {
"kapampangan": "pam",
"filipino": "fil",
"english": "eng",
"tagalog": "tgl",
}
# TTS Models (Kapampangan, Tagalog, English)
TTS_MODELS = {
"kapampangan": "facebook/mms-tts-pam",
"tagalog": "facebook/mms-tts-tgl",
"english": "facebook/mms-tts-eng"
}
# Translation Models
TRANSLATION_MODELS = {
"pam-eng": "Coco-18/opus-mt-pam-en",
"eng-pam": "Coco-18/opus-mt-en-pam",
"tgl-eng": "Helsinki-NLP/opus-mt-tl-en",
"eng-tgl": "Helsinki-NLP/opus-mt-en-tl",
"phi": "Coco-18/opus-mt-phi"
}
def init_models(device):
"""Initialize all models required for the API"""
global asr_model, asr_processor, tts_models, tts_processors, translation_models, translation_tokenizers
# Initialize ASR model
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
logger.info(f"πŸ”„ Loading ASR model: {ASR_MODEL_ID}")
try:
asr_processor = AutoProcessor.from_pretrained(
ASR_MODEL_ID,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
logger.info("βœ… ASR processor loaded successfully")
asr_model = Wav2Vec2ForCTC.from_pretrained(
ASR_MODEL_ID,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
asr_model.to(device)
logger.info(f"βœ… ASR model loaded successfully on {device}")
except Exception as e:
logger.error(f"❌ Error loading ASR model: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
# Initialize TTS models
for lang, model_id in TTS_MODELS.items():
logger.info(f"πŸ”„ Loading TTS model for {lang}: {model_id}")
try:
tts_processors[lang] = AutoTokenizer.from_pretrained(
model_id,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
logger.info(f"βœ… {lang} TTS processor loaded")
tts_models[lang] = VitsModel.from_pretrained(
model_id,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
tts_models[lang].to(device)
logger.info(f"βœ… {lang} TTS model loaded on {device}")
except Exception as e:
logger.error(f"❌ Failed to load {lang} TTS model: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
tts_models[lang] = None
# Initialize translation models
for model_key, model_id in TRANSLATION_MODELS.items():
logger.info(f"πŸ”„ Loading Translation model: {model_id}")
try:
translation_tokenizers[model_key] = MarianTokenizer.from_pretrained(
model_id,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
logger.info(f"βœ… Translation tokenizer loaded successfully for {model_key}")
translation_models[model_key] = MarianMTModel.from_pretrained(
model_id,
cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
translation_models[model_key].to(device)
logger.info(f"βœ… Translation model loaded successfully on {device} for {model_key}")
except Exception as e:
logger.error(f"❌ Error loading Translation model for {model_key}: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
translation_models[model_key] = None
translation_tokenizers[model_key] = None
def check_model_status():
"""Check and return the status of all models"""
# Initialize direct language pair statuses based on loaded models
translation_status = {}
# Add status for direct model pairs
for lang_pair in ["pam-eng", "eng-pam", "tgl-eng", "eng-tgl"]:
translation_status[lang_pair] = "loaded" if lang_pair in translation_models and translation_models[
lang_pair] is not None else "failed"
# Add special phi model status
phi_status = "loaded" if "phi" in translation_models and translation_models["phi"] is not None else "failed"
translation_status["pam-fil"] = phi_status
translation_status["fil-pam"] = phi_status
translation_status["pam-tgl"] = phi_status # Using phi model but replacing tgl with fil
translation_status["tgl-pam"] = phi_status # Using phi model but replacing tgl with fil
return {
"asr_model": "loaded" if asr_model is not None else "failed",
"tts_models": {lang: "loaded" if model is not None else "failed"
for lang, model in tts_models.items()},
"translation_models": translation_status
}
def handle_asr_request(request, output_dir, sample_rate):
"""Handle ASR (Automatic Speech Recognition) requests"""
if asr_model is None or asr_processor is None:
logger.error("❌ ASR endpoint called but models aren't loaded")
return jsonify({"error": "ASR model not available"}), 503
try:
if "audio" not in request.files:
logger.warning("⚠️ ASR request missing audio file")
return jsonify({"error": "No audio file uploaded"}), 400
audio_file = request.files["audio"]
language = request.form.get("language", "english").lower()
if language not in LANGUAGE_CODES:
logger.warning(f"⚠️ Unsupported language requested: {language}")
return jsonify(
{"error": f"Unsupported language: {language}. Available: {list(LANGUAGE_CODES.keys())}"}), 400
lang_code = LANGUAGE_CODES[language]
logger.info(f"πŸ”„ Processing {language} audio for ASR")
# Save the uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
temp_audio.write(audio_file.read())
temp_audio_path = temp_audio.name
logger.debug(f"πŸ“ Temporary audio saved to {temp_audio_path}")
# Convert to WAV if necessary
wav_path = temp_audio_path
if not audio_file.filename.lower().endswith(".wav"):
wav_path = os.path.join(output_dir, "converted_audio.wav")
logger.info(f"πŸ”„ Converting audio to WAV format: {wav_path}")
try:
audio = AudioSegment.from_file(temp_audio_path)
audio = audio.set_frame_rate(sample_rate).set_channels(1)
audio.export(wav_path, format="wav")
except Exception as e:
logger.error(f"❌ Audio conversion failed: {str(e)}")
return jsonify({"error": f"Audio conversion failed: {str(e)}"}), 500
# Load and process the WAV file
try:
waveform, sr = torchaudio.load(wav_path)
logger.debug(f"βœ… Audio loaded: {wav_path} (Sample rate: {sr}Hz)")
# Resample if needed
if sr != sample_rate:
logger.info(f"πŸ”„ Resampling audio from {sr}Hz to {sample_rate}Hz")
waveform = torchaudio.transforms.Resample(sr, sample_rate)(waveform)
waveform = waveform / torch.max(torch.abs(waveform))
except Exception as e:
logger.error(f"❌ Failed to load or process audio: {str(e)}")
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
# Process audio for ASR
try:
inputs = asr_processor(
waveform.squeeze().numpy(),
sampling_rate=sample_rate,
return_tensors="pt",
language=lang_code
)
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
except Exception as e:
logger.error(f"❌ ASR preprocessing failed: {str(e)}")
return jsonify({"error": f"ASR preprocessing failed: {str(e)}"}), 500
# Perform ASR
try:
with torch.no_grad():
logits = asr_model(**inputs).logits
ids = torch.argmax(logits, dim=-1)[0]
transcription = asr_processor.decode(ids)
logger.info(f"βœ… Transcription ({language}): {transcription}")
# Clean up temp files
try:
os.unlink(temp_audio_path)
if wav_path != temp_audio_path:
os.unlink(wav_path)
except Exception as e:
logger.warning(f"⚠️ Failed to clean up temp files: {str(e)}")
return jsonify({
"transcription": transcription,
"language": language,
"language_code": lang_code
})
except Exception as e:
logger.error(f"❌ ASR inference failed: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
except Exception as e:
logger.error(f"❌ Unhandled exception in ASR endpoint: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
def handle_tts_request(request, output_dir):
"""Handle TTS (Text-to-Speech) requests"""
try:
data = request.get_json()
if not data:
logger.warning("⚠️ TTS endpoint called with no JSON data")
return jsonify({"error": "No JSON data provided"}), 400
text_input = data.get("text", "").strip()
language = data.get("language", "kapampangan").lower()
if not text_input:
logger.warning("⚠️ TTS request with empty text")
return jsonify({"error": "No text provided"}), 400
if language not in TTS_MODELS:
logger.warning(f"⚠️ TTS requested for unsupported language: {language}")
return jsonify({"error": f"Invalid language. Available options: {list(TTS_MODELS.keys())}"}), 400
if tts_models[language] is None:
logger.error(f"❌ TTS model for {language} not loaded")
return jsonify({"error": f"TTS model for {language} not available"}), 503
logger.info(f"πŸ”„ Generating TTS for language: {language}, text: '{text_input}'")
try:
processor = tts_processors[language]
model = tts_models[language]
inputs = processor(text_input, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
except Exception as e:
logger.error(f"❌ TTS preprocessing failed: {str(e)}")
return jsonify({"error": f"TTS preprocessing failed: {str(e)}"}), 500
# Generate speech
try:
with torch.no_grad():
output = model(**inputs).waveform
waveform = output.squeeze().cpu().numpy()
except Exception as e:
logger.error(f"❌ TTS inference failed: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500
# Save to file with a unique name to prevent overwriting
try:
# Create a unique filename using timestamp and text hash
import hashlib
import time
text_hash = hashlib.md5(text_input.encode()).hexdigest()[:8]
timestamp = int(time.time())
output_filename = os.path.join(output_dir, f"{language}_{text_hash}_{timestamp}.wav")
sampling_rate = model.config.sampling_rate
sf.write(output_filename, waveform, sampling_rate)
logger.info(f"βœ… Speech generated! File saved: {output_filename}")
except Exception as e:
logger.error(f"❌ Failed to save audio file: {str(e)}")
return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500
# Add cache-busting parameter to URL
return jsonify({
"message": "TTS audio generated",
"file_url": f"/download/{os.path.basename(output_filename)}?t={timestamp}",
"language": language,
"text_length": len(text_input)
})
except Exception as e:
logger.error(f"❌ Unhandled exception in TTS endpoint: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
def handle_translation_request(request):
"""Handle translation requests"""
try:
data = request.get_json()
if not data:
logger.warning("⚠️ Translation endpoint called with no JSON data")
return jsonify({"error": "No JSON data provided"}), 400
source_text = data.get("text", "").strip()
source_language = data.get("source_language", "").lower()
target_language = data.get("target_language", "").lower()
if not source_text:
logger.warning("⚠️ Translation request with empty text")
return jsonify({"error": "No text provided"}), 400
# Map language names to codes
source_code = LANGUAGE_CODES.get(source_language, source_language)
target_code = LANGUAGE_CODES.get(target_language, target_language)
logger.info(f"πŸ”„ Translating from {source_language} to {target_language}: '{source_text}'")
# Special handling for pam-fil, fil-pam, pam-tgl and tgl-pam using the phi model
use_phi_model = False
actual_source_code = source_code
actual_target_code = target_code
# Check if we need to use the phi model with fil replacement
if (source_code == "pam" and target_code == "fil") or (source_code == "fil" and target_code == "pam"):
use_phi_model = True
elif (source_code == "pam" and target_code == "tgl"):
use_phi_model = True
actual_target_code = "fil" # Replace tgl with fil for the phi model
elif (source_code == "tgl" and target_code == "pam"):
use_phi_model = True
actual_source_code = "fil" # Replace tgl with fil for the phi model
if use_phi_model:
model_key = "phi"
# Check if we have the phi model
if model_key not in translation_models or translation_models[model_key] is None:
logger.error(f"❌ Translation model for {model_key} not loaded")
return jsonify({"error": f"Translation model not available"}), 503
try:
# Get the phi model and tokenizer
model = translation_models[model_key]
tokenizer = translation_tokenizers[model_key]
# Prepend target language token to input
input_text = f">>{actual_target_code}<< {source_text}"
logger.info(f"πŸ”„ Using phi model with input: '{input_text}'")
# Tokenize the text
tokenized = tokenizer(input_text, return_tensors="pt", padding=True)
tokenized = {k: v.to(model.device) for k, v in tokenized.items()}
with torch.no_grad():
translated = model.generate(
**tokenized,
max_length=100, # Reasonable output length
num_beams=4, # Same as in training
length_penalty=0.6, # Same as in training
early_stopping=True, # Same as in training
repetition_penalty=1.5, # Add this to prevent repetition
no_repeat_ngram_size=3 # Add this to prevent repetition
)
# Decode the translation
result = tokenizer.decode(translated[0], skip_special_tokens=True)
logger.info(f"βœ… Translation result: '{result}'")
return jsonify({
"translated_text": result,
"source_language": source_language,
"target_language": target_language
})
except Exception as e:
logger.error(f"❌ Translation processing failed: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500
else:
# Create the regular language pair key for other language pairs
lang_pair = f"{source_code}-{target_code}"
# Check if we have a model for this language pair
if lang_pair not in translation_models:
logger.warning(f"⚠️ No translation model available for {lang_pair}")
return jsonify(
{"error": f"Translation from {source_language} to {target_language} is not supported yet"}), 400
if translation_models[lang_pair] is None or translation_tokenizers[lang_pair] is None:
logger.error(f"❌ Translation model for {lang_pair} not loaded")
return jsonify({"error": f"Translation model not available"}), 503
try:
# Regular translation process for other language pairs
model = translation_models[lang_pair]
tokenizer = translation_tokenizers[lang_pair]
# Tokenize the text
tokenized = tokenizer(source_text, return_tensors="pt", padding=True)
tokenized = {k: v.to(model.device) for k, v in tokenized.items()}
# Generate translation
with torch.no_grad():
translated = model.generate(**tokenized)
# Decode the translation
result = tokenizer.decode(translated[0], skip_special_tokens=True)
logger.info(f"βœ… Translation result: '{result}'")
return jsonify({
"translated_text": result,
"source_language": source_language,
"target_language": target_language
})
except Exception as e:
logger.error(f"❌ Translation processing failed: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500
except Exception as e:
logger.error(f"❌ Unhandled exception in translation endpoint: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
def get_asr_model():
return asr_model
def get_asr_processor():
return asr_processor