File size: 19,255 Bytes
aa906c3
f083352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa906c3
f083352
aa906c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f083352
aa906c3
f083352
 
 
aa906c3
 
 
f083352
 
 
aa906c3
f083352
 
 
 
aa906c3
 
 
 
 
 
f083352
aa906c3
f083352
 
 
aa906c3
 
 
f083352
 
 
aa906c3
f083352
 
 
 
aa906c3
 
f083352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa906c3
f083352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa906c3
f083352
 
 
aa906c3
 
 
 
 
 
 
 
 
 
 
 
 
 
f083352
aa906c3
 
 
 
 
 
 
 
 
f083352
aa906c3
 
f083352
 
 
 
aa906c3
f083352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa906c3
f083352
 
 
 
 
 
 
 
 
 
 
 
aa906c3
f083352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d62ccb
f083352
5d62ccb
 
 
 
 
 
 
f083352
 
 
 
 
 
 
5d62ccb
f083352
 
5d62ccb
f083352
aa906c3
f083352
 
 
 
 
 
5d62ccb
 
f083352
 
 
5d62ccb
f083352
 
5d62ccb
 
 
f083352
5d62ccb
 
f083352
 
5d62ccb
 
 
f083352
5d62ccb
aa906c3
5d62ccb
 
 
 
aa906c3
5d62ccb
 
 
 
 
 
 
 
 
aa906c3
5d62ccb
 
aa906c3
5d62ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f083352
 
5d62ccb
f083352
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# translator.py - Handles ASR, TTS, and translation tasks

import os
import sys
import logging
import traceback
import torch
import torchaudio
import tempfile
import soundfile as sf
from pydub import AudioSegment
from flask import jsonify
from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
from transformers import MarianMTModel, MarianTokenizer

# Configure logging
logger = logging.getLogger("speech_api")

# Global variables to store models and processors
asr_model = None
asr_processor = None
tts_models = {}
tts_processors = {}
translation_models = {}
translation_tokenizers = {}

# Language-specific configurations
LANGUAGE_CODES = {
    "kapampangan": "pam",
    "filipino": "fil",
    "english": "eng",
    "tagalog": "tgl",
}

# TTS Models (Kapampangan, Tagalog, English)
TTS_MODELS = {
    "kapampangan": "facebook/mms-tts-pam",
    "tagalog": "facebook/mms-tts-tgl",
    "english": "facebook/mms-tts-eng"
}

# Translation Models
TRANSLATION_MODELS = {
    "pam-eng": "Coco-18/opus-mt-pam-en",
    "eng-pam": "Coco-18/opus-mt-en-pam",
    "tgl-eng": "Helsinki-NLP/opus-mt-tl-en",
    "eng-tgl": "Helsinki-NLP/opus-mt-en-tl",
    "phi": "Coco-18/opus-mt-phi"
}

def init_models(device):
    """Initialize all models required for the API"""
    global asr_model, asr_processor, tts_models, tts_processors, translation_models, translation_tokenizers

    # Initialize ASR model
    ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
    logger.info(f"πŸ”„ Loading ASR model: {ASR_MODEL_ID}")

    try:
        asr_processor = AutoProcessor.from_pretrained(
            ASR_MODEL_ID,
            cache_dir=os.environ.get("TRANSFORMERS_CACHE")
        )
        logger.info("βœ… ASR processor loaded successfully")

        asr_model = Wav2Vec2ForCTC.from_pretrained(
            ASR_MODEL_ID,
            cache_dir=os.environ.get("TRANSFORMERS_CACHE")
        )
        asr_model.to(device)
        logger.info(f"βœ… ASR model loaded successfully on {device}")
    except Exception as e:
        logger.error(f"❌ Error loading ASR model: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")

    # Initialize TTS models
    for lang, model_id in TTS_MODELS.items():
        logger.info(f"πŸ”„ Loading TTS model for {lang}: {model_id}")
        try:
            tts_processors[lang] = AutoTokenizer.from_pretrained(
                model_id,
                cache_dir=os.environ.get("TRANSFORMERS_CACHE")
            )
            logger.info(f"βœ… {lang} TTS processor loaded")

            tts_models[lang] = VitsModel.from_pretrained(
                model_id,
                cache_dir=os.environ.get("TRANSFORMERS_CACHE")
            )
            tts_models[lang].to(device)
            logger.info(f"βœ… {lang} TTS model loaded on {device}")
        except Exception as e:
            logger.error(f"❌ Failed to load {lang} TTS model: {str(e)}")
            logger.debug(f"Stack trace: {traceback.format_exc()}")
            tts_models[lang] = None

    # Initialize translation models
    for model_key, model_id in TRANSLATION_MODELS.items():
        logger.info(f"πŸ”„ Loading Translation model: {model_id}")

        try:
            translation_tokenizers[model_key] = MarianTokenizer.from_pretrained(
                model_id,
                cache_dir=os.environ.get("TRANSFORMERS_CACHE")
            )
            logger.info(f"βœ… Translation tokenizer loaded successfully for {model_key}")

            translation_models[model_key] = MarianMTModel.from_pretrained(
                model_id,
                cache_dir=os.environ.get("TRANSFORMERS_CACHE")
            )
            translation_models[model_key].to(device)
            logger.info(f"βœ… Translation model loaded successfully on {device} for {model_key}")
        except Exception as e:
            logger.error(f"❌ Error loading Translation model for {model_key}: {str(e)}")
            logger.debug(f"Stack trace: {traceback.format_exc()}")
            translation_models[model_key] = None
            translation_tokenizers[model_key] = None


def check_model_status():
    """Check and return the status of all models"""
    # Initialize direct language pair statuses based on loaded models
    translation_status = {}

    # Add status for direct model pairs
    for lang_pair in ["pam-eng", "eng-pam", "tgl-eng", "eng-tgl"]:
        translation_status[lang_pair] = "loaded" if lang_pair in translation_models and translation_models[
            lang_pair] is not None else "failed"

    # Add special phi model status
    phi_status = "loaded" if "phi" in translation_models and translation_models["phi"] is not None else "failed"
    translation_status["pam-fil"] = phi_status
    translation_status["fil-pam"] = phi_status
    translation_status["pam-tgl"] = phi_status  # Using phi model but replacing tgl with fil
    translation_status["tgl-pam"] = phi_status  # Using phi model but replacing tgl with fil

    return {
        "asr_model": "loaded" if asr_model is not None else "failed",
        "tts_models": {lang: "loaded" if model is not None else "failed"
                       for lang, model in tts_models.items()},
        "translation_models": translation_status
    }


def handle_asr_request(request, output_dir, sample_rate):
    """Handle ASR (Automatic Speech Recognition) requests"""
    if asr_model is None or asr_processor is None:
        logger.error("❌ ASR endpoint called but models aren't loaded")
        return jsonify({"error": "ASR model not available"}), 503

    try:
        if "audio" not in request.files:
            logger.warning("⚠️ ASR request missing audio file")
            return jsonify({"error": "No audio file uploaded"}), 400

        audio_file = request.files["audio"]
        language = request.form.get("language", "english").lower()

        if language not in LANGUAGE_CODES:
            logger.warning(f"⚠️ Unsupported language requested: {language}")
            return jsonify(
                {"error": f"Unsupported language: {language}. Available: {list(LANGUAGE_CODES.keys())}"}), 400

        lang_code = LANGUAGE_CODES[language]
        logger.info(f"πŸ”„ Processing {language} audio for ASR")

        # Save the uploaded file temporarily
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
            temp_audio.write(audio_file.read())
            temp_audio_path = temp_audio.name
            logger.debug(f"πŸ“ Temporary audio saved to {temp_audio_path}")

        # Convert to WAV if necessary
        wav_path = temp_audio_path
        if not audio_file.filename.lower().endswith(".wav"):
            wav_path = os.path.join(output_dir, "converted_audio.wav")
            logger.info(f"πŸ”„ Converting audio to WAV format: {wav_path}")
            try:
                audio = AudioSegment.from_file(temp_audio_path)
                audio = audio.set_frame_rate(sample_rate).set_channels(1)
                audio.export(wav_path, format="wav")
            except Exception as e:
                logger.error(f"❌ Audio conversion failed: {str(e)}")
                return jsonify({"error": f"Audio conversion failed: {str(e)}"}), 500

# Load and process the WAV file
        try:
            waveform, sr = torchaudio.load(wav_path)
            logger.debug(f"βœ… Audio loaded: {wav_path} (Sample rate: {sr}Hz)")

            # Resample if needed
            if sr != sample_rate:
                logger.info(f"πŸ”„ Resampling audio from {sr}Hz to {sample_rate}Hz")
                waveform = torchaudio.transforms.Resample(sr, sample_rate)(waveform)

            waveform = waveform / torch.max(torch.abs(waveform))
        except Exception as e:
            logger.error(f"❌ Failed to load or process audio: {str(e)}")
            return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500

        # Process audio for ASR
        try:
            inputs = asr_processor(
                waveform.squeeze().numpy(),
                sampling_rate=sample_rate,
                return_tensors="pt",
                language=lang_code
            )
            inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
        except Exception as e:
            logger.error(f"❌ ASR preprocessing failed: {str(e)}")
            return jsonify({"error": f"ASR preprocessing failed: {str(e)}"}), 500

        # Perform ASR
        try:
            with torch.no_grad():
                logits = asr_model(**inputs).logits
            ids = torch.argmax(logits, dim=-1)[0]
            transcription = asr_processor.decode(ids)

            logger.info(f"βœ… Transcription ({language}): {transcription}")

            # Clean up temp files
            try:
                os.unlink(temp_audio_path)
                if wav_path != temp_audio_path:
                    os.unlink(wav_path)
            except Exception as e:
                logger.warning(f"⚠️ Failed to clean up temp files: {str(e)}")

            return jsonify({
                "transcription": transcription,
                "language": language,
                "language_code": lang_code
            })
        except Exception as e:
            logger.error(f"❌ ASR inference failed: {str(e)}")
            logger.debug(f"Stack trace: {traceback.format_exc()}")
            return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500

    except Exception as e:
        logger.error(f"❌ Unhandled exception in ASR endpoint: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500

def handle_tts_request(request, output_dir):
    """Handle TTS (Text-to-Speech) requests"""
    try:
        data = request.get_json()
        if not data:
            logger.warning("⚠️ TTS endpoint called with no JSON data")
            return jsonify({"error": "No JSON data provided"}), 400

        text_input = data.get("text", "").strip()
        language = data.get("language", "kapampangan").lower()

        if not text_input:
            logger.warning("⚠️ TTS request with empty text")
            return jsonify({"error": "No text provided"}), 400

        if language not in TTS_MODELS:
            logger.warning(f"⚠️ TTS requested for unsupported language: {language}")
            return jsonify({"error": f"Invalid language. Available options: {list(TTS_MODELS.keys())}"}), 400

        if tts_models[language] is None:
            logger.error(f"❌ TTS model for {language} not loaded")
            return jsonify({"error": f"TTS model for {language} not available"}), 503

        logger.info(f"πŸ”„ Generating TTS for language: {language}, text: '{text_input}'")

        try:
            processor = tts_processors[language]
            model = tts_models[language]
            inputs = processor(text_input, return_tensors="pt")
            inputs = {k: v.to(model.device) for k, v in inputs.items()}
        except Exception as e:
            logger.error(f"❌ TTS preprocessing failed: {str(e)}")
            return jsonify({"error": f"TTS preprocessing failed: {str(e)}"}), 500

        # Generate speech
        try:
            with torch.no_grad():
                output = model(**inputs).waveform
                waveform = output.squeeze().cpu().numpy()
        except Exception as e:
            logger.error(f"❌ TTS inference failed: {str(e)}")
            logger.debug(f"Stack trace: {traceback.format_exc()}")
            return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500

        # Save to file with a unique name to prevent overwriting
        try:
            # Create a unique filename using timestamp and text hash
            import hashlib
            import time
            text_hash = hashlib.md5(text_input.encode()).hexdigest()[:8]
            timestamp = int(time.time())
            
            output_filename = os.path.join(output_dir, f"{language}_{text_hash}_{timestamp}.wav")
            sampling_rate = model.config.sampling_rate
            sf.write(output_filename, waveform, sampling_rate)
            logger.info(f"βœ… Speech generated! File saved: {output_filename}")
        except Exception as e:
            logger.error(f"❌ Failed to save audio file: {str(e)}")
            return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500

        # Add cache-busting parameter to URL
        return jsonify({
            "message": "TTS audio generated",
            "file_url": f"/download/{os.path.basename(output_filename)}?t={timestamp}",
            "language": language,
            "text_length": len(text_input)
        })
    except Exception as e:
        logger.error(f"❌ Unhandled exception in TTS endpoint: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500

def handle_translation_request(request):
    """Handle translation requests"""
    try:
        data = request.get_json()
        if not data:
            logger.warning("⚠️ Translation endpoint called with no JSON data")
            return jsonify({"error": "No JSON data provided"}), 400

        source_text = data.get("text", "").strip()
        source_language = data.get("source_language", "").lower()
        target_language = data.get("target_language", "").lower()

        if not source_text:
            logger.warning("⚠️ Translation request with empty text")
            return jsonify({"error": "No text provided"}), 400

        # Map language names to codes
        source_code = LANGUAGE_CODES.get(source_language, source_language)
        target_code = LANGUAGE_CODES.get(target_language, target_language)

        logger.info(f"πŸ”„ Translating from {source_language} to {target_language}: '{source_text}'")

        # Special handling for pam-fil, fil-pam, pam-tgl and tgl-pam using the phi model
        use_phi_model = False
        actual_source_code = source_code
        actual_target_code = target_code

        # Check if we need to use the phi model with fil replacement
        if (source_code == "pam" and target_code == "fil") or (source_code == "fil" and target_code == "pam"):
            use_phi_model = True
        elif (source_code == "pam" and target_code == "tgl"):
            use_phi_model = True
            actual_target_code = "fil"  # Replace tgl with fil for the phi model
        elif (source_code == "tgl" and target_code == "pam"):
            use_phi_model = True
            actual_source_code = "fil"  # Replace tgl with fil for the phi model

        if use_phi_model:
            model_key = "phi"

            # Check if we have the phi model
            if model_key not in translation_models or translation_models[model_key] is None:
                logger.error(f"❌ Translation model for {model_key} not loaded")
                return jsonify({"error": f"Translation model not available"}), 503

            try:
                # Get the phi model and tokenizer
                model = translation_models[model_key]
                tokenizer = translation_tokenizers[model_key]

                # Prepend target language token to input
                input_text = f">>{actual_target_code}<< {source_text}"

                logger.info(f"πŸ”„ Using phi model with input: '{input_text}'")

                # Tokenize the text
                tokenized = tokenizer(input_text, return_tensors="pt", padding=True)
                tokenized = {k: v.to(model.device) for k, v in tokenized.items()}

                with torch.no_grad():
                    translated = model.generate(
                        **tokenized,
                        max_length=100,              # Reasonable output length
                        num_beams=4,                 # Same as in training
                        length_penalty=0.6,          # Same as in training
                        early_stopping=True,         # Same as in training
                        repetition_penalty=1.5,      # Add this to prevent repetition
                        no_repeat_ngram_size=3       # Add this to prevent repetition
                    )

                # Decode the translation
                result = tokenizer.decode(translated[0], skip_special_tokens=True)

                logger.info(f"βœ… Translation result: '{result}'")

                return jsonify({
                    "translated_text": result,
                    "source_language": source_language,
                    "target_language": target_language
                })
            except Exception as e:
                logger.error(f"❌ Translation processing failed: {str(e)}")
                logger.debug(f"Stack trace: {traceback.format_exc()}")
                return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500
        else:
            # Create the regular language pair key for other language pairs
            lang_pair = f"{source_code}-{target_code}"

            # Check if we have a model for this language pair
            if lang_pair not in translation_models:
                logger.warning(f"⚠️ No translation model available for {lang_pair}")
                return jsonify(
                    {"error": f"Translation from {source_language} to {target_language} is not supported yet"}), 400

            if translation_models[lang_pair] is None or translation_tokenizers[lang_pair] is None:
                logger.error(f"❌ Translation model for {lang_pair} not loaded")
                return jsonify({"error": f"Translation model not available"}), 503

            try:
                # Regular translation process for other language pairs
                model = translation_models[lang_pair]
                tokenizer = translation_tokenizers[lang_pair]

                # Tokenize the text
                tokenized = tokenizer(source_text, return_tensors="pt", padding=True)
                tokenized = {k: v.to(model.device) for k, v in tokenized.items()}

                # Generate translation
                with torch.no_grad():
                    translated = model.generate(**tokenized)

                # Decode the translation
                result = tokenizer.decode(translated[0], skip_special_tokens=True)

                logger.info(f"βœ… Translation result: '{result}'")

                return jsonify({
                    "translated_text": result,
                    "source_language": source_language,
                    "target_language": target_language
                })
            except Exception as e:
                logger.error(f"❌ Translation processing failed: {str(e)}")
                logger.debug(f"Stack trace: {traceback.format_exc()}")
                return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500

    except Exception as e:
        logger.error(f"❌ Unhandled exception in translation endpoint: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500

def get_asr_model():
    return asr_model

def get_asr_processor():
    return asr_processor