Update translator.py
Browse files- translator.py +123 -57
translator.py
CHANGED
@@ -288,9 +288,15 @@ def handle_tts_request(request, output_dir):
|
|
288 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
289 |
return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500
|
290 |
|
291 |
-
# Save to file
|
292 |
try:
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
sampling_rate = model.config.sampling_rate
|
295 |
sf.write(output_filename, waveform, sampling_rate)
|
296 |
logger.info(f"β
Speech generated! File saved: {output_filename}")
|
@@ -298,9 +304,10 @@ def handle_tts_request(request, output_dir):
|
|
298 |
logger.error(f"β Failed to save audio file: {str(e)}")
|
299 |
return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500
|
300 |
|
|
|
301 |
return jsonify({
|
302 |
"message": "TTS audio generated",
|
303 |
-
"file_url": f"/download/{os.path.basename(output_filename)}",
|
304 |
"language": language,
|
305 |
"text_length": len(text_input)
|
306 |
})
|
@@ -309,75 +316,134 @@ def handle_tts_request(request, output_dir):
|
|
309 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
310 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
311 |
|
312 |
-
def
|
313 |
-
"""Handle
|
314 |
try:
|
315 |
data = request.get_json()
|
316 |
if not data:
|
317 |
-
logger.warning("β οΈ
|
318 |
return jsonify({"error": "No JSON data provided"}), 400
|
319 |
|
320 |
-
|
321 |
-
|
|
|
322 |
|
323 |
-
if not
|
324 |
-
logger.warning("β οΈ
|
325 |
return jsonify({"error": "No text provided"}), 400
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
|
331 |
-
|
332 |
-
logger.error(f"β TTS model for {language} not loaded")
|
333 |
-
return jsonify({"error": f"TTS model for {language} not available"}), 503
|
334 |
|
335 |
-
|
|
|
|
|
|
|
336 |
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
|
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
with torch.no_grad():
|
349 |
-
output = model(**inputs).waveform
|
350 |
-
waveform = output.squeeze().cpu().numpy()
|
351 |
-
except Exception as e:
|
352 |
-
logger.error(f"β TTS inference failed: {str(e)}")
|
353 |
-
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
354 |
-
return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
-
# Add cache-busting parameter to URL
|
373 |
-
return jsonify({
|
374 |
-
"message": "TTS audio generated",
|
375 |
-
"file_url": f"/download/{os.path.basename(output_filename)}?t={timestamp}",
|
376 |
-
"language": language,
|
377 |
-
"text_length": len(text_input)
|
378 |
-
})
|
379 |
except Exception as e:
|
380 |
-
logger.error(f"β Unhandled exception in
|
381 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
382 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
383 |
|
|
|
288 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
289 |
return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500
|
290 |
|
291 |
+
# Save to file with a unique name to prevent overwriting
|
292 |
try:
|
293 |
+
# Create a unique filename using timestamp and text hash
|
294 |
+
import hashlib
|
295 |
+
import time
|
296 |
+
text_hash = hashlib.md5(text_input.encode()).hexdigest()[:8]
|
297 |
+
timestamp = int(time.time())
|
298 |
+
|
299 |
+
output_filename = os.path.join(output_dir, f"{language}_{text_hash}_{timestamp}.wav")
|
300 |
sampling_rate = model.config.sampling_rate
|
301 |
sf.write(output_filename, waveform, sampling_rate)
|
302 |
logger.info(f"β
Speech generated! File saved: {output_filename}")
|
|
|
304 |
logger.error(f"β Failed to save audio file: {str(e)}")
|
305 |
return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500
|
306 |
|
307 |
+
# Add cache-busting parameter to URL
|
308 |
return jsonify({
|
309 |
"message": "TTS audio generated",
|
310 |
+
"file_url": f"/download/{os.path.basename(output_filename)}?t={timestamp}",
|
311 |
"language": language,
|
312 |
"text_length": len(text_input)
|
313 |
})
|
|
|
316 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
317 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
318 |
|
319 |
+
def handle_translation_request(request):
|
320 |
+
"""Handle translation requests"""
|
321 |
try:
|
322 |
data = request.get_json()
|
323 |
if not data:
|
324 |
+
logger.warning("β οΈ Translation endpoint called with no JSON data")
|
325 |
return jsonify({"error": "No JSON data provided"}), 400
|
326 |
|
327 |
+
source_text = data.get("text", "").strip()
|
328 |
+
source_language = data.get("source_language", "").lower()
|
329 |
+
target_language = data.get("target_language", "").lower()
|
330 |
|
331 |
+
if not source_text:
|
332 |
+
logger.warning("β οΈ Translation request with empty text")
|
333 |
return jsonify({"error": "No text provided"}), 400
|
334 |
|
335 |
+
# Map language names to codes
|
336 |
+
source_code = LANGUAGE_CODES.get(source_language, source_language)
|
337 |
+
target_code = LANGUAGE_CODES.get(target_language, target_language)
|
338 |
|
339 |
+
logger.info(f"π Translating from {source_language} to {target_language}: '{source_text}'")
|
|
|
|
|
340 |
|
341 |
+
# Special handling for pam-fil, fil-pam, pam-tgl and tgl-pam using the phi model
|
342 |
+
use_phi_model = False
|
343 |
+
actual_source_code = source_code
|
344 |
+
actual_target_code = target_code
|
345 |
|
346 |
+
# Check if we need to use the phi model with fil replacement
|
347 |
+
if (source_code == "pam" and target_code == "fil") or (source_code == "fil" and target_code == "pam"):
|
348 |
+
use_phi_model = True
|
349 |
+
elif (source_code == "pam" and target_code == "tgl"):
|
350 |
+
use_phi_model = True
|
351 |
+
actual_target_code = "fil" # Replace tgl with fil for the phi model
|
352 |
+
elif (source_code == "tgl" and target_code == "pam"):
|
353 |
+
use_phi_model = True
|
354 |
+
actual_source_code = "fil" # Replace tgl with fil for the phi model
|
355 |
|
356 |
+
if use_phi_model:
|
357 |
+
model_key = "phi"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
+
# Check if we have the phi model
|
360 |
+
if model_key not in translation_models or translation_models[model_key] is None:
|
361 |
+
logger.error(f"β Translation model for {model_key} not loaded")
|
362 |
+
return jsonify({"error": f"Translation model not available"}), 503
|
363 |
+
|
364 |
+
try:
|
365 |
+
# Get the phi model and tokenizer
|
366 |
+
model = translation_models[model_key]
|
367 |
+
tokenizer = translation_tokenizers[model_key]
|
368 |
+
|
369 |
+
# Prepend target language token to input
|
370 |
+
input_text = f">>{actual_target_code}<< {source_text}"
|
371 |
+
|
372 |
+
logger.info(f"π Using phi model with input: '{input_text}'")
|
373 |
+
|
374 |
+
# Tokenize the text
|
375 |
+
tokenized = tokenizer(input_text, return_tensors="pt", padding=True)
|
376 |
+
tokenized = {k: v.to(model.device) for k, v in tokenized.items()}
|
377 |
+
|
378 |
+
with torch.no_grad():
|
379 |
+
translated = model.generate(
|
380 |
+
**tokenized,
|
381 |
+
max_length=100, # Reasonable output length
|
382 |
+
num_beams=4, # Same as in training
|
383 |
+
length_penalty=0.6, # Same as in training
|
384 |
+
early_stopping=True, # Same as in training
|
385 |
+
repetition_penalty=1.5, # Add this to prevent repetition
|
386 |
+
no_repeat_ngram_size=3 # Add this to prevent repetition
|
387 |
+
)
|
388 |
+
|
389 |
+
# Decode the translation
|
390 |
+
result = tokenizer.decode(translated[0], skip_special_tokens=True)
|
391 |
+
|
392 |
+
logger.info(f"β
Translation result: '{result}'")
|
393 |
+
|
394 |
+
return jsonify({
|
395 |
+
"translated_text": result,
|
396 |
+
"source_language": source_language,
|
397 |
+
"target_language": target_language
|
398 |
+
})
|
399 |
+
except Exception as e:
|
400 |
+
logger.error(f"β Translation processing failed: {str(e)}")
|
401 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
402 |
+
return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500
|
403 |
+
else:
|
404 |
+
# Create the regular language pair key for other language pairs
|
405 |
+
lang_pair = f"{source_code}-{target_code}"
|
406 |
+
|
407 |
+
# Check if we have a model for this language pair
|
408 |
+
if lang_pair not in translation_models:
|
409 |
+
logger.warning(f"β οΈ No translation model available for {lang_pair}")
|
410 |
+
return jsonify(
|
411 |
+
{"error": f"Translation from {source_language} to {target_language} is not supported yet"}), 400
|
412 |
+
|
413 |
+
if translation_models[lang_pair] is None or translation_tokenizers[lang_pair] is None:
|
414 |
+
logger.error(f"β Translation model for {lang_pair} not loaded")
|
415 |
+
return jsonify({"error": f"Translation model not available"}), 503
|
416 |
+
|
417 |
+
try:
|
418 |
+
# Regular translation process for other language pairs
|
419 |
+
model = translation_models[lang_pair]
|
420 |
+
tokenizer = translation_tokenizers[lang_pair]
|
421 |
+
|
422 |
+
# Tokenize the text
|
423 |
+
tokenized = tokenizer(source_text, return_tensors="pt", padding=True)
|
424 |
+
tokenized = {k: v.to(model.device) for k, v in tokenized.items()}
|
425 |
+
|
426 |
+
# Generate translation
|
427 |
+
with torch.no_grad():
|
428 |
+
translated = model.generate(**tokenized)
|
429 |
+
|
430 |
+
# Decode the translation
|
431 |
+
result = tokenizer.decode(translated[0], skip_special_tokens=True)
|
432 |
+
|
433 |
+
logger.info(f"β
Translation result: '{result}'")
|
434 |
+
|
435 |
+
return jsonify({
|
436 |
+
"translated_text": result,
|
437 |
+
"source_language": source_language,
|
438 |
+
"target_language": target_language
|
439 |
+
})
|
440 |
+
except Exception as e:
|
441 |
+
logger.error(f"β Translation processing failed: {str(e)}")
|
442 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
443 |
+
return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500
|
444 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
except Exception as e:
|
446 |
+
logger.error(f"β Unhandled exception in translation endpoint: {str(e)}")
|
447 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
448 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
449 |
|