Update translator.py
Browse files- translator.py +54 -113
translator.py
CHANGED
@@ -309,134 +309,75 @@ def handle_tts_request(request, output_dir):
|
|
309 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
310 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
311 |
|
312 |
-
def
|
313 |
-
"""Handle
|
314 |
try:
|
315 |
data = request.get_json()
|
316 |
if not data:
|
317 |
-
logger.warning("β οΈ
|
318 |
return jsonify({"error": "No JSON data provided"}), 400
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
target_language = data.get("target_language", "").lower()
|
323 |
|
324 |
-
if not
|
325 |
-
logger.warning("β οΈ
|
326 |
return jsonify({"error": "No text provided"}), 400
|
327 |
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
logger.info(f"π Translating from {source_language} to {target_language}: '{source_text}'")
|
333 |
-
|
334 |
-
# Special handling for pam-fil, fil-pam, pam-tgl and tgl-pam using the phi model
|
335 |
-
use_phi_model = False
|
336 |
-
actual_source_code = source_code
|
337 |
-
actual_target_code = target_code
|
338 |
-
|
339 |
-
# Check if we need to use the phi model with fil replacement
|
340 |
-
if (source_code == "pam" and target_code == "fil") or (source_code == "fil" and target_code == "pam"):
|
341 |
-
use_phi_model = True
|
342 |
-
elif (source_code == "pam" and target_code == "tgl"):
|
343 |
-
use_phi_model = True
|
344 |
-
actual_target_code = "fil" # Replace tgl with fil for the phi model
|
345 |
-
elif (source_code == "tgl" and target_code == "pam"):
|
346 |
-
use_phi_model = True
|
347 |
-
actual_source_code = "fil" # Replace tgl with fil for the phi model
|
348 |
-
|
349 |
-
if use_phi_model:
|
350 |
-
model_key = "phi"
|
351 |
-
|
352 |
-
# Check if we have the phi model
|
353 |
-
if model_key not in translation_models or translation_models[model_key] is None:
|
354 |
-
logger.error(f"β Translation model for {model_key} not loaded")
|
355 |
-
return jsonify({"error": f"Translation model not available"}), 503
|
356 |
-
|
357 |
-
try:
|
358 |
-
# Get the phi model and tokenizer
|
359 |
-
model = translation_models[model_key]
|
360 |
-
tokenizer = translation_tokenizers[model_key]
|
361 |
-
|
362 |
-
# Prepend target language token to input
|
363 |
-
input_text = f">>{actual_target_code}<< {source_text}"
|
364 |
-
|
365 |
-
logger.info(f"π Using phi model with input: '{input_text}'")
|
366 |
-
|
367 |
-
# Tokenize the text
|
368 |
-
tokenized = tokenizer(input_text, return_tensors="pt", padding=True)
|
369 |
-
tokenized = {k: v.to(model.device) for k, v in tokenized.items()}
|
370 |
-
|
371 |
-
with torch.no_grad():
|
372 |
-
translated = model.generate(
|
373 |
-
**tokenized,
|
374 |
-
max_length=100, # Reasonable output length
|
375 |
-
num_beams=4, # Same as in training
|
376 |
-
length_penalty=0.6, # Same as in training
|
377 |
-
early_stopping=True, # Same as in training
|
378 |
-
repetition_penalty=1.5, # Add this to prevent repetition
|
379 |
-
no_repeat_ngram_size=3 # Add this to prevent repetition
|
380 |
-
)
|
381 |
-
|
382 |
-
# Decode the translation
|
383 |
-
result = tokenizer.decode(translated[0], skip_special_tokens=True)
|
384 |
-
|
385 |
-
logger.info(f"β
Translation result: '{result}'")
|
386 |
-
|
387 |
-
return jsonify({
|
388 |
-
"translated_text": result,
|
389 |
-
"source_language": source_language,
|
390 |
-
"target_language": target_language
|
391 |
-
})
|
392 |
-
except Exception as e:
|
393 |
-
logger.error(f"β Translation processing failed: {str(e)}")
|
394 |
-
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
395 |
-
return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500
|
396 |
-
else:
|
397 |
-
# Create the regular language pair key for other language pairs
|
398 |
-
lang_pair = f"{source_code}-{target_code}"
|
399 |
-
|
400 |
-
# Check if we have a model for this language pair
|
401 |
-
if lang_pair not in translation_models:
|
402 |
-
logger.warning(f"β οΈ No translation model available for {lang_pair}")
|
403 |
-
return jsonify(
|
404 |
-
{"error": f"Translation from {source_language} to {target_language} is not supported yet"}), 400
|
405 |
-
|
406 |
-
if translation_models[lang_pair] is None or translation_tokenizers[lang_pair] is None:
|
407 |
-
logger.error(f"β Translation model for {lang_pair} not loaded")
|
408 |
-
return jsonify({"error": f"Translation model not available"}), 503
|
409 |
-
|
410 |
-
try:
|
411 |
-
# Regular translation process for other language pairs
|
412 |
-
model = translation_models[lang_pair]
|
413 |
-
tokenizer = translation_tokenizers[lang_pair]
|
414 |
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
|
419 |
-
|
420 |
-
with torch.no_grad():
|
421 |
-
translated = model.generate(**tokenized)
|
422 |
|
423 |
-
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
|
426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
except Exception as e:
|
439 |
-
logger.error(f"β Unhandled exception in
|
440 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
441 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
442 |
|
|
|
309 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
310 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
311 |
|
312 |
+
def handle_tts_request(request, output_dir):
|
313 |
+
"""Handle TTS (Text-to-Speech) requests"""
|
314 |
try:
|
315 |
data = request.get_json()
|
316 |
if not data:
|
317 |
+
logger.warning("β οΈ TTS endpoint called with no JSON data")
|
318 |
return jsonify({"error": "No JSON data provided"}), 400
|
319 |
|
320 |
+
text_input = data.get("text", "").strip()
|
321 |
+
language = data.get("language", "kapampangan").lower()
|
|
|
322 |
|
323 |
+
if not text_input:
|
324 |
+
logger.warning("β οΈ TTS request with empty text")
|
325 |
return jsonify({"error": "No text provided"}), 400
|
326 |
|
327 |
+
if language not in TTS_MODELS:
|
328 |
+
logger.warning(f"β οΈ TTS requested for unsupported language: {language}")
|
329 |
+
return jsonify({"error": f"Invalid language. Available options: {list(TTS_MODELS.keys())}"}), 400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
+
if tts_models[language] is None:
|
332 |
+
logger.error(f"β TTS model for {language} not loaded")
|
333 |
+
return jsonify({"error": f"TTS model for {language} not available"}), 503
|
334 |
|
335 |
+
logger.info(f"π Generating TTS for language: {language}, text: '{text_input}'")
|
|
|
|
|
336 |
|
337 |
+
try:
|
338 |
+
processor = tts_processors[language]
|
339 |
+
model = tts_models[language]
|
340 |
+
inputs = processor(text_input, return_tensors="pt")
|
341 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
342 |
+
except Exception as e:
|
343 |
+
logger.error(f"β TTS preprocessing failed: {str(e)}")
|
344 |
+
return jsonify({"error": f"TTS preprocessing failed: {str(e)}"}), 500
|
345 |
|
346 |
+
# Generate speech
|
347 |
+
try:
|
348 |
+
with torch.no_grad():
|
349 |
+
output = model(**inputs).waveform
|
350 |
+
waveform = output.squeeze().cpu().numpy()
|
351 |
+
except Exception as e:
|
352 |
+
logger.error(f"β TTS inference failed: {str(e)}")
|
353 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
354 |
+
return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500
|
355 |
|
356 |
+
# Save to file with a unique name to prevent overwriting
|
357 |
+
try:
|
358 |
+
# Create a unique filename using timestamp and text hash
|
359 |
+
import hashlib
|
360 |
+
import time
|
361 |
+
text_hash = hashlib.md5(text_input.encode()).hexdigest()[:8]
|
362 |
+
timestamp = int(time.time())
|
363 |
+
|
364 |
+
output_filename = os.path.join(output_dir, f"{language}_{text_hash}_{timestamp}.wav")
|
365 |
+
sampling_rate = model.config.sampling_rate
|
366 |
+
sf.write(output_filename, waveform, sampling_rate)
|
367 |
+
logger.info(f"β
Speech generated! File saved: {output_filename}")
|
368 |
+
except Exception as e:
|
369 |
+
logger.error(f"β Failed to save audio file: {str(e)}")
|
370 |
+
return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500
|
371 |
|
372 |
+
# Add cache-busting parameter to URL
|
373 |
+
return jsonify({
|
374 |
+
"message": "TTS audio generated",
|
375 |
+
"file_url": f"/download/{os.path.basename(output_filename)}?t={timestamp}",
|
376 |
+
"language": language,
|
377 |
+
"text_length": len(text_input)
|
378 |
+
})
|
379 |
except Exception as e:
|
380 |
+
logger.error(f"β Unhandled exception in TTS endpoint: {str(e)}")
|
381 |
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
382 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
383 |
|