File size: 6,425 Bytes
9c8a2cf 8cb6f0a 9c8a2cf 036e058 f03b779 036e058 e085921 8cb6f0a 661887e e085921 9c8a2cf e085921 9c8a2cf e085921 661887e e085921 661887e e085921 8cb6f0a 9c8a2cf e085921 8cb6f0a e085921 661887e 036e058 e085921 9c8a2cf 036e058 661887e e085921 fe51424 e085921 f03b779 e085921 f03b779 e085921 fe51424 661887e 036e058 661887e e085921 036e058 e085921 661887e e085921 fe51424 661887e fe51424 e085921 fe51424 e085921 661887e 036e058 661887e 036e058 661887e e085921 661887e 9c8a2cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# Set cache directories first, before other imports
import os
# Set all cache directories to locations within /tmp
os.environ["HF_HOME"] = "/tmp/hf_home"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface_hub_cache"
os.environ["TORCH_HOME"] = "/tmp/torch_home"
os.environ["XDG_CACHE_HOME"] = "/tmp/xdg_cache"
# Create necessary directories
for path in ["/tmp/hf_home", "/tmp/transformers_cache", "/tmp/huggingface_hub_cache", "/tmp/torch_home", "/tmp/xdg_cache"]:
os.makedirs(path, exist_ok=True)
# Now import the rest of the libraries
import torch
from pydub import AudioSegment
import tempfile
import torchaudio
import soundfile as sf
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
app = Flask(__name__)
CORS(app)
# ASR Model
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
print(f"Loading ASR model: {ASR_MODEL_ID}")
try:
asr_processor = AutoProcessor.from_pretrained(
ASR_MODEL_ID,
cache_dir="/tmp/transformers_cache" # Explicitly set cache_dir
)
asr_model = Wav2Vec2ForCTC.from_pretrained(
ASR_MODEL_ID,
cache_dir="/tmp/transformers_cache" # Explicitly set cache_dir
)
print("β
ASR Model loaded successfully")
except Exception as e:
print(f"β Error loading ASR model: {str(e)}")
# Provide more debugging information
import sys
print(f"Python version: {sys.version}")
print(f"Current working directory: {os.getcwd()}")
print(f"Temp directory exists: {os.path.exists('/tmp')}")
print(f"Temp directory writeable: {os.access('/tmp', os.W_OK)}")
# Let's continue anyway to see if we can at least start the API
# Language-specific configurations
LANGUAGE_CODES = {
"kapampangan": "pam",
"tagalog": "tgl",
"english": "eng"
}
# TTS Models (Kapampangan, Tagalog, English)
TTS_MODELS = {
"kapampangan": "facebook/mms-tts-pam",
"tagalog": "facebook/mms-tts-tgl",
"english": "facebook/mms-tts-eng"
}
tts_models = {}
tts_processors = {}
for lang, model_id in TTS_MODELS.items():
try:
tts_models[lang] = VitsModel.from_pretrained(
model_id,
cache_dir="/tmp/transformers_cache" # Explicitly set cache_dir
)
tts_processors[lang] = AutoTokenizer.from_pretrained(
model_id,
cache_dir="/tmp/transformers_cache" # Explicitly set cache_dir
)
print(f"β
TTS Model loaded: {lang}")
except Exception as e:
print(f"β Error loading {lang} TTS model: {e}")
tts_models[lang] = None
# Constants
SAMPLE_RATE = 16000
OUTPUT_DIR = "/tmp/audio_outputs"
os.makedirs(OUTPUT_DIR, exist_ok=True)
@app.route("/", methods=["GET"])
def home():
return jsonify({"message": "Speech API is running."})
@app.route("/asr", methods=["POST"])
def transcribe_audio():
try:
if "audio" not in request.files:
return jsonify({"error": "No audio file uploaded"}), 400
audio_file = request.files["audio"]
language = request.form.get("language", "english").lower()
if language not in LANGUAGE_CODES:
return jsonify({"error": f"Unsupported language: {language}"}), 400
lang_code = LANGUAGE_CODES[language]
# Save the uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
temp_audio.write(audio_file.read())
temp_audio_path = temp_audio.name
# Convert to WAV if necessary
wav_path = temp_audio_path
if not audio_file.filename.lower().endswith(".wav"):
wav_path = os.path.join(OUTPUT_DIR, "converted_audio.wav")
audio = AudioSegment.from_file(temp_audio_path)
audio = audio.set_frame_rate(SAMPLE_RATE).set_channels(1)
audio.export(wav_path, format="wav")
# Load and process the WAV file
waveform, sr = torchaudio.load(wav_path)
# Resample if needed
if sr != SAMPLE_RATE:
waveform = torchaudio.transforms.Resample(sr, SAMPLE_RATE)(waveform)
waveform = waveform / torch.max(torch.abs(waveform))
# Process audio for ASR
inputs = asr_processor(
waveform.squeeze().numpy(),
sampling_rate=SAMPLE_RATE,
return_tensors="pt",
language=lang_code
)
# Perform ASR
with torch.no_grad():
logits = asr_model(**inputs).logits
ids = torch.argmax(logits, dim=-1)[0]
transcription = asr_processor.decode(ids)
print(f"Transcription ({language}): {transcription}")
return jsonify({"transcription": transcription})
except Exception as e:
print(f"ASR error: {str(e)}")
return jsonify({"error": f"ASR failed: {str(e)}"}), 500
@app.route("/tts", methods=["POST"])
def generate_tts():
try:
data = request.get_json()
text_input = data.get("text", "").strip()
language = data.get("language", "kapampangan").lower()
if language not in TTS_MODELS:
return jsonify({"error": "Invalid language"}), 400
if not text_input:
return jsonify({"error": "No text provided"}), 400
if tts_models[language] is None:
return jsonify({"error": "TTS model not available"}), 500
processor = tts_processors[language]
model = tts_models[language]
inputs = processor(text_input, return_tensors="pt")
with torch.no_grad():
output = model.generate(**inputs)
waveform = output.cpu().numpy().flatten()
output_filename = os.path.join(OUTPUT_DIR, f"{language}_tts.wav")
sf.write(output_filename, waveform, SAMPLE_RATE)
return jsonify({"file_url": f"/download/{language}_tts.wav"})
except Exception as e:
return jsonify({"error": f"TTS failed: {e}"}), 500
@app.route("/download/<filename>", methods=["GET"])
def download_audio(filename):
file_path = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(file_path):
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
return jsonify({"error": "File not found"}), 404
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True) |