File size: 25,313 Bytes
da8916e 1a61e31 da8916e 2dbb181 fa7dfde 2dbb181 da8916e 2dbb181 da8916e 2dbb181 70bf861 2dbb181 70bf861 2dbb181 70bf861 2dbb181 da8916e 2dbb181 da8916e fa7dfde da8916e 2dbb181 da8916e 2dbb181 da8916e 2dbb181 da8916e 2dbb181 da8916e 2dbb181 da8916e 1a61e31 da8916e 1a61e31 da8916e 2dbb181 edd4f88 70bf861 edd4f88 70bf861 edd4f88 97ad04f edd4f88 53ae3c9 da8916e 53ae3c9 edd4f88 53ae3c9 da8916e 53ae3c9 da8916e 53ae3c9 edd4f88 53ae3c9 edd4f88 53ae3c9 edd4f88 53ae3c9 da8916e 53ae3c9 edd4f88 53ae3c9 edd4f88 53ae3c9 da8916e 53ae3c9 2dbb181 da8916e 53ae3c9 da8916e 2dbb181 da8916e 53ae3c9 da8916e 53ae3c9 da8916e 53ae3c9 da8916e 53ae3c9 da8916e 53ae3c9 da8916e 53ae3c9 da8916e 53ae3c9 da8916e 53ae3c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
# evaluate.py - Handles evaluation and comparing tasks
import os
import glob
import logging
import traceback
import tempfile
import shutil
from difflib import SequenceMatcher
import torch
import torchaudio
from pydub import AudioSegment
from flask import jsonify
from werkzeug.utils import secure_filename
from concurrent.futures import ThreadPoolExecutor
# Import necessary functions from translator.py
from translator import get_asr_model, get_asr_processor, LANGUAGE_CODES
# Configure logging
logger = logging.getLogger("speech_api")
def calculate_similarity(text1, text2):
"""Calculate text similarity percentage."""
def clean_text(text):
return text.lower()
clean1 = clean_text(text1)
clean2 = clean_text(text2)
matcher = SequenceMatcher(None, clean1, clean2)
return matcher.ratio() * 100
def setup_reference_patterns(reference_dir, sample_rate=16000):
"""Create standard reference pattern directories and dummy files if needed"""
reference_patterns = [
"mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
"pagdulapan_da_ka", "kaluguran_da_ka", "dakal_a_salamat", "panapaya_mu_ku",
"wa", "ali", "tuknang", "lagwa", "galo", "buri_ke_ini", "tara_na",
"nokarin_ka_ibat", "nokarin_ka_munta", "atiu_na_ku", "nanung_panayan_mu",
"mako_na_ka", "muli_ta_na", "nanu_ing_pengan_mu", "mekeni", "mengan_na_ka",
"munta_ka_karin", "magkanu_ini", "mimingat_ka", "mangan_ta_na", "lakwan_da_ka",
"nanu_maliari_kung_daptan_keka", "pilan_na_ka_banwa", "saliwan_ke_ini",
"makananu_munta_king"
]
created_dirs = 0
created_files = 0
for pattern in reference_patterns:
pattern_dir = os.path.join(reference_dir, pattern)
if not os.path.exists(pattern_dir):
try:
os.makedirs(pattern_dir, exist_ok=True)
logger.info(f"π Created reference pattern directory: {pattern_dir}")
created_dirs += 1
except Exception as e:
logger.error(f"β Failed to create reference pattern directory {pattern_dir}: {str(e)}")
continue
# Check if directory has any WAV files, add a dummy if not
wav_files = glob.glob(os.path.join(pattern_dir, "*.wav"))
if not wav_files:
try:
dummy_path = os.path.join(pattern_dir, "dummy_reference.wav")
# Create a 1-second silent audio file - not completely silent to avoid transcription issues
# Adding a small amount of noise helps ASR models detect something
silent = AudioSegment.silent(duration=1000, frame_rate=sample_rate)
# Add a tiny bit of noise
for i in range(50, 950, 300):
silent = silent.overlay(AudioSegment.silent(duration=50, frame_rate=sample_rate) + 3, position=i)
silent.export(dummy_path, format="wav")
logger.info(f"π Created dummy reference file: {dummy_path}")
created_files += 1
except Exception as e:
logger.error(f"β Failed to create dummy file in {pattern_dir}: {str(e)}")
return created_dirs, created_files
def search_reference_directories():
"""Search for possible reference directories in various locations"""
possible_locations = [
"./reference_audios",
"../reference_audios",
"/app/reference_audios",
"/tmp/reference_audios",
os.path.join(os.path.dirname(os.path.abspath(__file__)), "reference_audios")
]
found_dirs = []
for location in possible_locations:
if os.path.exists(location) and os.path.isdir(location):
access_info = {
"readable": os.access(location, os.R_OK),
"writable": os.access(location, os.W_OK),
"executable": os.access(location, os.X_OK)
}
# Count pattern directories
pattern_dirs = [d for d in os.listdir(location)
if os.path.isdir(os.path.join(location, d))]
# Count total wav files
wav_count = 0
for pattern in pattern_dirs:
pattern_path = os.path.join(location, pattern)
wav_count += len(glob.glob(os.path.join(pattern_path, "*.wav")))
found_dirs.append({
"path": location,
"access": access_info,
"pattern_dirs": len(pattern_dirs),
"wav_files": wav_count
})
return found_dirs
def init_reference_audio(reference_dir, output_dir):
"""Initialize reference audio directories and return the working directory path"""
try:
# Create the output directory first
os.makedirs(output_dir, exist_ok=True)
logger.info(f"π Created output directory: {output_dir}")
# Search for existing reference directories
found_dirs = search_reference_directories()
for directory in found_dirs:
logger.info(f"π Found reference directory: {directory['path']} "
f"(patterns: {directory['pattern_dirs']}, wav files: {directory['wav_files']})")
# First, try to use the provided reference_dir
working_dir = reference_dir
# Check if reference_dir is accessible and writable
if not os.path.exists(reference_dir) or not os.access(reference_dir, os.W_OK):
logger.warning(f"β οΈ Provided reference directory {reference_dir} is not writable")
# Try to use a found directory that has patterns and is writable
for directory in found_dirs:
if directory['access']['writable'] and directory['pattern_dirs'] > 0:
working_dir = directory['path']
logger.info(f"β
Using found reference directory: {working_dir}")
break
else:
# If no suitable directory found, create one in /tmp
working_dir = os.path.join('/tmp', 'reference_audios')
logger.warning(f"β οΈ Using fallback reference directory in /tmp: {working_dir}")
# Ensure the working directory exists
os.makedirs(working_dir, exist_ok=True)
logger.info(f"π Using reference directory: {working_dir}")
# Set up reference pattern directories with dummy files if needed
dirs_created, files_created = setup_reference_patterns(working_dir)
logger.info(f"π Created {dirs_created} directories and {files_created} dummy files")
# Try to copy reference files from other found directories to working directory if needed
if files_created > 0 and len(found_dirs) > 1:
# Try to find a directory with existing WAV files
for directory in found_dirs:
if directory['path'] != working_dir and directory['wav_files'] > 0:
try:
source_dir = directory['path']
logger.info(f"π Copying reference files from {source_dir} to {working_dir}")
# Copy pattern directories that have WAV files
for item in os.listdir(source_dir):
src_path = os.path.join(source_dir, item)
if os.path.isdir(src_path) and glob.glob(os.path.join(src_path, "*.wav")):
dst_path = os.path.join(working_dir, item)
# Copy each WAV file individually
for wav_file in glob.glob(os.path.join(src_path, "*.wav")):
wav_name = os.path.basename(wav_file)
dst_file = os.path.join(dst_path, wav_name)
if not os.path.exists(dst_file):
shutil.copy2(wav_file, dst_file)
logger.info(f"π Copied {wav_name} to {dst_path}")
break
except Exception as e:
logger.warning(f"β οΈ Failed to copy reference files: {str(e)}")
# Log the final contents
pattern_dirs = [d for d in os.listdir(working_dir)
if os.path.isdir(os.path.join(working_dir, d))]
logger.info(f"π Final reference directory has {len(pattern_dirs)} pattern directories")
total_wav_files = 0
for pattern in pattern_dirs:
pattern_path = os.path.join(working_dir, pattern)
wav_files = glob.glob(os.path.join(pattern_path, "*.wav"))
total_wav_files += len(wav_files)
logger.info(f" - {pattern}: {len(wav_files)} WAV files")
logger.info(f"π Total reference WAV files: {total_wav_files}")
return working_dir
except Exception as e:
logger.error(f"β Failed to set up reference audio directory: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
# As a last resort, try to use /tmp
fallback_dir = os.path.join('/tmp', 'reference_audios')
try:
os.makedirs(fallback_dir, exist_ok=True)
setup_reference_patterns(fallback_dir)
logger.warning(f"β οΈ Using emergency fallback directory: {fallback_dir}")
return fallback_dir
except:
logger.critical("π₯ CRITICAL: Failed to create even a fallback directory")
return reference_dir
def handle_upload_reference(request, reference_dir, sample_rate):
"""Handle upload of reference audio files"""
try:
if "audio" not in request.files:
logger.warning("β οΈ Reference upload missing audio file")
return jsonify({"error": "No audio file uploaded"}), 400
reference_word = request.form.get("reference_word", "").strip()
if not reference_word:
logger.warning("β οΈ Reference upload missing reference word")
return jsonify({"error": "No reference word provided"}), 400
# Validate reference word
reference_patterns = [
"mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
"pagdulapan_da_ka", "kaluguran_da_ka", "dakal_a_salamat", "panapaya_mu_ku",
"wa", "ali", "tuknang", "lagwa", "galo", "buri_ke_ini", "tara_na",
"nokarin_ka_ibat", "nokarin_ka_munta", "atiu_na_ku", "nanung_panayan_mu",
"mako_na_ka", "muli_ta_na", "nanu_ing_pengan_mu", "mekeni", "mengan_na_ka",
"munta_ka_karin", "magkanu_ini", "mimingat_ka", "mangan_ta_na", "lakwan_da_ka",
"nanu_maliari_kung_daptan_keka", "pilan_na_ka_banwa", "saliwan_ke_ini",
"makananu_munta_king"
]
if reference_word not in reference_patterns:
logger.warning(f"β οΈ Invalid reference word: {reference_word}")
return jsonify({"error": f"Invalid reference word. Available: {reference_patterns}"}), 400
# Make sure we have a writable reference directory
if not os.path.exists(reference_dir):
reference_dir = os.path.join('/tmp', 'reference_audios')
os.makedirs(reference_dir, exist_ok=True)
logger.warning(f"β οΈ Using alternate reference directory for upload: {reference_dir}")
# Create directory for reference pattern if it doesn't exist
pattern_dir = os.path.join(reference_dir, reference_word)
os.makedirs(pattern_dir, exist_ok=True)
# Save the reference audio file
audio_file = request.files["audio"]
filename = secure_filename(audio_file.filename)
# Ensure filename has .wav extension
if not filename.lower().endswith('.wav'):
base_name = os.path.splitext(filename)[0]
filename = f"{base_name}.wav"
file_path = os.path.join(pattern_dir, filename)
# Create a temporary file first, then convert to WAV
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
audio_file.save(temp_file.name)
temp_path = temp_file.name
try:
# Process the audio file
audio = AudioSegment.from_file(temp_path)
audio = audio.set_frame_rate(sample_rate).set_channels(1)
audio.export(file_path, format="wav")
logger.info(f"β
Reference audio saved successfully for {reference_word}: {file_path}")
# Clean up temp file
try:
os.unlink(temp_path)
except:
pass
except Exception as e:
logger.error(f"β Reference audio processing failed: {str(e)}")
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
# Count how many references we have now
references = glob.glob(os.path.join(pattern_dir, "*.wav"))
return jsonify({
"message": "Reference audio uploaded successfully",
"reference_word": reference_word,
"file": filename,
"total_references": len(references)
})
except Exception as e:
logger.error(f"β Unhandled exception in reference upload: {str(e)}")
logger.debug(f"Stack trace: {traceback.format_exc()}")
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
"""Handle pronunciation evaluation requests"""
request_id = f"req-{id(request)}" # Create unique ID for this request
logger.info(f"[{request_id}] π Starting new pronunciation evaluation request")
temp_dir = None
# Get the ASR model and processor using the getter functions
asr_model = get_asr_model()
asr_processor = get_asr_processor()
if asr_model is None or asr_processor is None:
logger.error(f"[{request_id}] β Evaluation endpoint called but ASR models aren't loaded")
return jsonify({"error": "ASR model not available"}), 503
try:
if "audio" not in request.files:
logger.warning(f"[{request_id}] β οΈ Evaluation request missing audio file")
return jsonify({"error": "No audio file uploaded"}), 400
audio_file = request.files["audio"]
reference_locator = request.form.get("reference_locator", "").strip()
language = request.form.get("language", "kapampangan").lower()
# Validate reference locator
if not reference_locator:
logger.warning(f"[{request_id}] β οΈ No reference locator provided")
return jsonify({"error": "Reference locator is required"}), 400
# Construct full reference directory path
reference_dir_path = os.path.join(reference_dir, reference_locator)
logger.info(f"[{request_id}] π Reference directory path: {reference_dir_path}")
# Make sure the reference directory exists
if not os.path.exists(reference_dir_path):
try:
os.makedirs(reference_dir_path, exist_ok=True)
logger.warning(f"[{request_id}] β οΈ Created missing reference directory: {reference_dir_path}")
except Exception as e:
logger.error(f"[{request_id}] β Failed to create reference directory: {str(e)}")
return jsonify({"error": f"Reference audio directory not found: {reference_locator}"}), 404
# Check for reference files
reference_files = glob.glob(os.path.join(reference_dir_path, "*.wav"))
logger.info(f"[{request_id}] π Found {len(reference_files)} reference files")
# If no reference files exist, create a dummy reference file
if not reference_files:
logger.warning(f"[{request_id}] β οΈ No reference audio files found in {reference_dir_path}")
# Create a dummy reference file
try:
dummy_file_path = os.path.join(reference_dir_path, "dummy_reference.wav")
logger.info(f"[{request_id}] π Creating dummy reference file: {dummy_file_path}")
# Create a 1-second audio file with a slight sound
silent_audio = AudioSegment.silent(duration=1000, frame_rate=sample_rate)
# Add a tiny bit of noise to help ASR
for i in range(50, 950, 300):
silent_audio = silent_audio.overlay(AudioSegment.silent(duration=50, frame_rate=sample_rate) + 3, position=i)
silent_audio.export(dummy_file_path, format="wav")
# Add it to the list of reference files
reference_files = [dummy_file_path]
logger.info(f"[{request_id}] β
Created dummy reference file for testing")
except Exception as e:
logger.error(f"[{request_id}] β Failed to create dummy reference: {str(e)}")
return jsonify({"error": f"No reference audio found for {reference_locator}"}), 404
lang_code = LANGUAGE_CODES.get(language, language)
logger.info(f"[{request_id}] π Evaluating pronunciation for reference: {reference_locator} with language code: {lang_code}")
# Create a request-specific temp directory to avoid conflicts
temp_dir = os.path.join(output_dir, f"temp_{request_id}")
os.makedirs(temp_dir, exist_ok=True)
# Process user audio
user_audio_path = os.path.join(temp_dir, "user_audio_input.wav")
with open(user_audio_path, 'wb') as f:
f.write(audio_file.read())
try:
logger.info(f"[{request_id}] π Processing user audio file")
audio = AudioSegment.from_file(user_audio_path)
audio = audio.set_frame_rate(sample_rate).set_channels(1)
processed_path = os.path.join(temp_dir, "processed_user_audio.wav")
audio.export(processed_path, format="wav")
user_waveform, sr = torchaudio.load(processed_path)
user_waveform = user_waveform.squeeze().numpy()
logger.info(f"[{request_id}] β
User audio processed: {sr}Hz, length: {len(user_waveform)} samples")
user_audio_path = processed_path
except Exception as e:
logger.error(f"[{request_id}] β Audio processing failed: {str(e)}")
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
# Transcribe user audio
try:
logger.info(f"[{request_id}] π Transcribing user audio")
# Remove language parameter if causing warnings
inputs = asr_processor(
user_waveform,
sampling_rate=sample_rate,
return_tensors="pt"
)
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
with torch.no_grad():
logits = asr_model(**inputs).logits
ids = torch.argmax(logits, dim=-1)[0]
user_transcription = asr_processor.decode(ids)
logger.info(f"[{request_id}] β
User transcription: '{user_transcription}'")
except Exception as e:
logger.error(f"[{request_id}] β ASR inference failed: {str(e)}")
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
# Process reference files in batches
batch_size = 2 # Process 2 files at a time - adjust based on your hardware
results = []
best_score = 0
best_reference = None
best_transcription = None
# Use this if you want to limit the number of files to process
max_files_to_check = min(5, len(reference_files)) # Check at most 5 files
reference_files = reference_files[:max_files_to_check]
logger.info(f"[{request_id}] π Processing {len(reference_files)} reference files in batches of {batch_size}")
# Function to process a single reference file
def process_reference_file(ref_file):
ref_filename = os.path.basename(ref_file)
try:
# Load and resample reference audio
ref_waveform, ref_sr = torchaudio.load(ref_file)
if ref_sr != sample_rate:
ref_waveform = torchaudio.transforms.Resample(ref_sr, sample_rate)(ref_waveform)
ref_waveform = ref_waveform.squeeze().numpy()
# Transcribe reference audio - use the local asr_model and asr_processor
# Remove language parameter if causing warnings
inputs = asr_processor(
ref_waveform,
sampling_rate=sample_rate,
return_tensors="pt"
)
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
with torch.no_grad():
logits = asr_model(**inputs).logits
ids = torch.argmax(logits, dim=-1)[0]
ref_transcription = asr_processor.decode(ids)
# Calculate similarity
similarity = calculate_similarity(user_transcription, ref_transcription)
logger.info(
f"[{request_id}] π Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
return {
"reference_file": ref_filename,
"reference_text": ref_transcription,
"similarity_score": similarity
}
except Exception as e:
logger.error(f"[{request_id}] β Error processing {ref_filename}: {str(e)}")
return {
"reference_file": ref_filename,
"reference_text": "Error",
"similarity_score": 0,
"error": str(e)
}
# Process files in batches using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=batch_size) as executor:
batch_results = list(executor.map(process_reference_file, reference_files))
results.extend(batch_results)
# Find the best result
for result in batch_results:
if result["similarity_score"] > best_score:
best_score = result["similarity_score"]
best_reference = result["reference_file"]
best_transcription = result["reference_text"]
# Exit early if we found a very good match (optional)
if best_score > 80.0:
logger.info(f"[{request_id}] π Found excellent match: {best_score:.2f}%")
break
# Clean up temp files
try:
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
logger.debug(f"[{request_id}] π§Ή Cleaned up temporary directory")
except Exception as e:
logger.warning(f"[{request_id}] β οΈ Failed to clean up temp files: {str(e)}")
# Determine feedback based on score
is_correct = best_score >= 70.0
if best_score >= 90.0:
feedback = "Perfect pronunciation! Excellent job!"
elif best_score >= 80.0:
feedback = "Great pronunciation! Your accent is very good."
elif best_score >= 70.0:
feedback = "Good pronunciation. Keep practicing!"
elif best_score >= 50.0:
feedback = "Fair attempt. Try focusing on the syllables that differ from the sample."
else:
feedback = "Try again. Listen carefully to the sample pronunciation."
logger.info(f"[{request_id}] π Final evaluation results: score={best_score:.2f}%, is_correct={is_correct}")
logger.info(f"[{request_id}] π Feedback: '{feedback}'")
logger.info(f"[{request_id}] β
Evaluation complete")
# Sort results by score descending
results.sort(key=lambda x: x["similarity_score"], reverse=True)
return jsonify({
"is_correct": is_correct,
"score": best_score,
"feedback": feedback,
"user_transcription": user_transcription,
"best_reference_transcription": best_transcription,
"reference_locator": reference_locator,
"details": results
})
except Exception as e:
logger.error(f"[{request_id}] β Unhandled exception in evaluation endpoint: {str(e)}")
logger.debug(f"[{request_id}] Stack trace: {traceback.format_exc()}")
# Clean up on error
try:
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
except:
pass
return jsonify({"error": f"Internal server error: {str(e)}"}), 500 |