Update evaluate.py
Browse files- evaluate.py +181 -181
evaluate.py
CHANGED
|
@@ -320,76 +320,118 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
| 320 |
logger.info(f"[{request_id}] π Reference directory path: {reference_dir_path}")
|
| 321 |
|
| 322 |
# Make sure the reference directory exists
|
| 323 |
-
|
| 324 |
-
try:
|
| 325 |
-
os.makedirs(reference_dir_path, exist_ok=True)
|
| 326 |
-
logger.warning(f"[{request_id}] β οΈ Created missing reference directory: {reference_dir_path}")
|
| 327 |
-
except Exception as e:
|
| 328 |
-
logger.error(f"[{request_id}] β Failed to create reference directory: {str(e)}")
|
| 329 |
-
return jsonify({"error": f"Reference audio directory not found: {reference_locator}"}), 404
|
| 330 |
-
|
| 331 |
-
# Check for reference files
|
| 332 |
-
reference_files = glob.glob(os.path.join(reference_dir_path, "*.wav"))
|
| 333 |
-
logger.info(f"[{request_id}] π Found {len(reference_files)} reference files")
|
| 334 |
-
|
| 335 |
-
# If no reference files exist, create a dummy reference file
|
| 336 |
-
if not reference_files:
|
| 337 |
-
logger.warning(f"[{request_id}] β οΈ No reference audio files found in {reference_dir_path}")
|
| 338 |
-
|
| 339 |
-
# Create a dummy reference file
|
| 340 |
try:
|
| 341 |
-
|
| 342 |
-
logger.
|
| 343 |
-
|
| 344 |
-
# Create a 1-second audio file with a slight sound
|
| 345 |
-
silent_audio = AudioSegment.silent(duration=1000, frame_rate=sample_rate)
|
| 346 |
-
# Add a tiny bit of noise to help ASR
|
| 347 |
-
for i in range(50, 950, 300):
|
| 348 |
-
silent_audio = silent_audio.overlay(AudioSegment.silent(duration=50, frame_rate=sample_rate) + 3, position=i)
|
| 349 |
-
silent_audio.export(dummy_file_path, format="wav")
|
| 350 |
-
|
| 351 |
-
# Add it to the list of reference files
|
| 352 |
-
reference_files = [dummy_file_path]
|
| 353 |
-
logger.info(f"[{request_id}] β
Created dummy reference file for testing")
|
| 354 |
except Exception as e:
|
| 355 |
-
logger.error(f"[{request_id}] β Failed to create
|
| 356 |
-
return jsonify({"error": f"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
-
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
os.makedirs(temp_dir, exist_ok=True)
|
| 364 |
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
f.write(audio_file.read())
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
|
| 375 |
-
|
| 376 |
-
|
|
|
|
|
|
|
| 377 |
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
logger.info(f"[{request_id}] β
User audio processed: {sr}Hz, length: {len(user_waveform)} samples")
|
| 381 |
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
try:
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
# Remove language parameter if causing warnings
|
| 391 |
inputs = asr_processor(
|
| 392 |
-
|
| 393 |
sampling_rate=sample_rate,
|
| 394 |
return_tensors="pt"
|
| 395 |
)
|
|
@@ -398,135 +440,93 @@ def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
|
| 398 |
with torch.no_grad():
|
| 399 |
logits = asr_model(**inputs).logits
|
| 400 |
ids = torch.argmax(logits, dim=-1)[0]
|
| 401 |
-
|
| 402 |
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
logger.error(f"[{request_id}] β ASR inference failed: {str(e)}")
|
| 406 |
-
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
|
| 407 |
-
|
| 408 |
-
# Process reference files in batches
|
| 409 |
-
batch_size = 2 # Process 2 files at a time - adjust based on your hardware
|
| 410 |
-
results = []
|
| 411 |
-
best_score = 0
|
| 412 |
-
best_reference = None
|
| 413 |
-
best_transcription = None
|
| 414 |
-
|
| 415 |
-
# Use this if you want to limit the number of files to process
|
| 416 |
-
max_files_to_check = min(5, len(reference_files)) # Check at most 5 files
|
| 417 |
-
reference_files = reference_files[:max_files_to_check]
|
| 418 |
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
# Function to process a single reference file
|
| 422 |
-
def process_reference_file(ref_file):
|
| 423 |
-
ref_filename = os.path.basename(ref_file)
|
| 424 |
-
try:
|
| 425 |
-
# Load and resample reference audio
|
| 426 |
-
ref_waveform, ref_sr = torchaudio.load(ref_file)
|
| 427 |
-
if ref_sr != sample_rate:
|
| 428 |
-
ref_waveform = torchaudio.transforms.Resample(ref_sr, sample_rate)(ref_waveform)
|
| 429 |
-
ref_waveform = ref_waveform.squeeze().numpy()
|
| 430 |
-
|
| 431 |
-
# Transcribe reference audio - use the local asr_model and asr_processor
|
| 432 |
-
# Remove language parameter if causing warnings
|
| 433 |
-
inputs = asr_processor(
|
| 434 |
-
ref_waveform,
|
| 435 |
-
sampling_rate=sample_rate,
|
| 436 |
-
return_tensors="pt"
|
| 437 |
-
)
|
| 438 |
-
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
|
| 439 |
-
|
| 440 |
-
with torch.no_grad():
|
| 441 |
-
logits = asr_model(**inputs).logits
|
| 442 |
-
ids = torch.argmax(logits, dim=-1)[0]
|
| 443 |
-
ref_transcription = asr_processor.decode(ids)
|
| 444 |
-
|
| 445 |
-
# Calculate similarity
|
| 446 |
-
similarity = calculate_similarity(user_transcription, ref_transcription)
|
| 447 |
-
|
| 448 |
-
logger.info(
|
| 449 |
-
f"[{request_id}] π Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
|
| 450 |
-
|
| 451 |
-
return {
|
| 452 |
-
"reference_file": ref_filename,
|
| 453 |
-
"reference_text": ref_transcription,
|
| 454 |
-
"similarity_score": similarity
|
| 455 |
-
}
|
| 456 |
-
except Exception as e:
|
| 457 |
-
logger.error(f"[{request_id}] β Error processing {ref_filename}: {str(e)}")
|
| 458 |
-
return {
|
| 459 |
-
"reference_file": ref_filename,
|
| 460 |
-
"reference_text": "Error",
|
| 461 |
-
"similarity_score": 0,
|
| 462 |
-
"error": str(e)
|
| 463 |
-
}
|
| 464 |
-
|
| 465 |
-
# Process files in batches using ThreadPoolExecutor
|
| 466 |
-
with ThreadPoolExecutor(max_workers=batch_size) as executor:
|
| 467 |
-
batch_results = list(executor.map(process_reference_file, reference_files))
|
| 468 |
-
results.extend(batch_results)
|
| 469 |
-
|
| 470 |
-
# Find the best result
|
| 471 |
-
for result in batch_results:
|
| 472 |
-
if result["similarity_score"] > best_score:
|
| 473 |
-
best_score = result["similarity_score"]
|
| 474 |
-
best_reference = result["reference_file"]
|
| 475 |
-
best_transcription = result["reference_text"]
|
| 476 |
-
|
| 477 |
-
# Exit early if we found a very good match (optional)
|
| 478 |
-
if best_score > 80.0:
|
| 479 |
-
logger.info(f"[{request_id}] π Found excellent match: {best_score:.2f}%")
|
| 480 |
-
break
|
| 481 |
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
except Exception as e:
|
| 488 |
-
logger.
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
elif best_score >= 80.0:
|
| 496 |
-
feedback = "Great pronunciation! Your accent is very good."
|
| 497 |
-
elif best_score >= 70.0:
|
| 498 |
-
feedback = "Good pronunciation. Keep practicing!"
|
| 499 |
-
elif best_score >= 50.0:
|
| 500 |
-
feedback = "Fair attempt. Try focusing on the syllables that differ from the sample."
|
| 501 |
-
else:
|
| 502 |
-
feedback = "Try again. Listen carefully to the sample pronunciation."
|
| 503 |
-
|
| 504 |
-
logger.info(f"[{request_id}] π Final evaluation results: score={best_score:.2f}%, is_correct={is_correct}")
|
| 505 |
-
logger.info(f"[{request_id}] π Feedback: '{feedback}'")
|
| 506 |
-
logger.info(f"[{request_id}] β
Evaluation complete")
|
| 507 |
-
|
| 508 |
-
# Sort results by score descending
|
| 509 |
-
results.sort(key=lambda x: x["similarity_score"], reverse=True)
|
| 510 |
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
"
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
except Exception as e:
|
| 522 |
-
logger.
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
|
| 532 |
-
|
|
|
|
| 320 |
logger.info(f"[{request_id}] π Reference directory path: {reference_dir_path}")
|
| 321 |
|
| 322 |
# Make sure the reference directory exists
|
| 323 |
+
if not os.path.exists(reference_dir_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
try:
|
| 325 |
+
os.makedirs(reference_dir_path, exist_ok=True)
|
| 326 |
+
logger.warning(f"[{request_id}] β οΈ Created missing reference directory: {reference_dir_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
except Exception as e:
|
| 328 |
+
logger.error(f"[{request_id}] β Failed to create reference directory: {str(e)}")
|
| 329 |
+
return jsonify({"error": f"Reference audio directory not found: {reference_locator}"}), 404
|
| 330 |
+
|
| 331 |
+
# Check for reference files
|
| 332 |
+
reference_files = glob.glob(os.path.join(reference_dir_path, "*.wav"))
|
| 333 |
+
logger.info(f"[{request_id}] π Found {len(reference_files)} reference files")
|
| 334 |
|
| 335 |
+
# If no reference files exist, create a dummy reference file
|
| 336 |
+
if not reference_files:
|
| 337 |
+
logger.warning(f"[{request_id}] β οΈ No reference audio files found in {reference_dir_path}")
|
| 338 |
+
|
| 339 |
+
# Create a dummy reference file
|
| 340 |
+
try:
|
| 341 |
+
dummy_file_path = os.path.join(reference_dir_path, "dummy_reference.wav")
|
| 342 |
+
logger.info(f"[{request_id}] π Creating dummy reference file: {dummy_file_path}")
|
| 343 |
+
|
| 344 |
+
# Create a 1-second audio file with a slight sound
|
| 345 |
+
silent_audio = AudioSegment.silent(duration=1000, frame_rate=sample_rate)
|
| 346 |
+
# Add a tiny bit of noise to help ASR
|
| 347 |
+
for i in range(50, 950, 300):
|
| 348 |
+
silent_audio = silent_audio.overlay(AudioSegment.silent(duration=50, frame_rate=sample_rate) + 3, position=i)
|
| 349 |
+
silent_audio.export(dummy_file_path, format="wav")
|
| 350 |
+
|
| 351 |
+
# Add it to the list of reference files
|
| 352 |
+
reference_files = [dummy_file_path]
|
| 353 |
+
logger.info(f"[{request_id}] β
Created dummy reference file for testing")
|
| 354 |
+
except Exception as e:
|
| 355 |
+
logger.error(f"[{request_id}] β Failed to create dummy reference: {str(e)}")
|
| 356 |
+
return jsonify({"error": f"No reference audio found for {reference_locator}"}), 404
|
| 357 |
|
| 358 |
+
lang_code = LANGUAGE_CODES.get(language, language)
|
| 359 |
+
logger.info(f"[{request_id}] π Evaluating pronunciation for reference: {reference_locator} with language code: {lang_code}")
|
|
|
|
| 360 |
|
| 361 |
+
# Create a request-specific temp directory to avoid conflicts
|
| 362 |
+
temp_dir = os.path.join(output_dir, f"temp_{request_id}")
|
| 363 |
+
os.makedirs(temp_dir, exist_ok=True)
|
|
|
|
| 364 |
|
| 365 |
+
# Process user audio
|
| 366 |
+
user_audio_path = os.path.join(temp_dir, "user_audio_input.wav")
|
| 367 |
+
with open(user_audio_path, 'wb') as f:
|
| 368 |
+
f.write(audio_file.read())
|
| 369 |
|
| 370 |
+
try:
|
| 371 |
+
logger.info(f"[{request_id}] π Processing user audio file")
|
| 372 |
+
audio = AudioSegment.from_file(user_audio_path)
|
| 373 |
+
audio = audio.set_frame_rate(sample_rate).set_channels(1)
|
| 374 |
|
| 375 |
+
processed_path = os.path.join(temp_dir, "processed_user_audio.wav")
|
| 376 |
+
audio.export(processed_path, format="wav")
|
|
|
|
| 377 |
|
| 378 |
+
user_waveform, sr = torchaudio.load(processed_path)
|
| 379 |
+
user_waveform = user_waveform.squeeze().numpy()
|
| 380 |
+
logger.info(f"[{request_id}] β
User audio processed: {sr}Hz, length: {len(user_waveform)} samples")
|
| 381 |
+
|
| 382 |
+
user_audio_path = processed_path
|
| 383 |
+
except Exception as e:
|
| 384 |
+
logger.error(f"[{request_id}] β Audio processing failed: {str(e)}")
|
| 385 |
+
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
|
| 386 |
+
|
| 387 |
+
# Transcribe user audio
|
| 388 |
+
try:
|
| 389 |
+
logger.info(f"[{request_id}] π Transcribing user audio")
|
| 390 |
+
# Remove language parameter if causing warnings
|
| 391 |
+
inputs = asr_processor(
|
| 392 |
+
user_waveform,
|
| 393 |
+
sampling_rate=sample_rate,
|
| 394 |
+
return_tensors="pt"
|
| 395 |
+
)
|
| 396 |
+
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
|
| 397 |
+
|
| 398 |
+
with torch.no_grad():
|
| 399 |
+
logits = asr_model(**inputs).logits
|
| 400 |
+
ids = torch.argmax(logits, dim=-1)[0]
|
| 401 |
+
user_transcription = asr_processor.decode(ids)
|
| 402 |
+
|
| 403 |
+
logger.info(f"[{request_id}] β
User transcription: '{user_transcription}'")
|
| 404 |
+
except Exception as e:
|
| 405 |
+
logger.error(f"[{request_id}] β ASR inference failed: {str(e)}")
|
| 406 |
+
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
|
| 407 |
+
|
| 408 |
+
# Process reference files in batches
|
| 409 |
+
batch_size = 2 # Process 2 files at a time - adjust based on your hardware
|
| 410 |
+
results = []
|
| 411 |
+
best_score = 0
|
| 412 |
+
best_reference = None
|
| 413 |
+
best_transcription = None
|
| 414 |
|
| 415 |
+
# Use this if you want to limit the number of files to process
|
| 416 |
+
max_files_to_check = min(5, len(reference_files)) # Check at most 5 files
|
| 417 |
+
reference_files = reference_files[:max_files_to_check]
|
| 418 |
+
|
| 419 |
+
logger.info(f"[{request_id}] π Processing {len(reference_files)} reference files in batches of {batch_size}")
|
| 420 |
+
|
| 421 |
+
# Function to process a single reference file
|
| 422 |
+
def process_reference_file(ref_file):
|
| 423 |
+
ref_filename = os.path.basename(ref_file)
|
| 424 |
try:
|
| 425 |
+
# Load and resample reference audio
|
| 426 |
+
ref_waveform, ref_sr = torchaudio.load(ref_file)
|
| 427 |
+
if ref_sr != sample_rate:
|
| 428 |
+
ref_waveform = torchaudio.transforms.Resample(ref_sr, sample_rate)(ref_waveform)
|
| 429 |
+
ref_waveform = ref_waveform.squeeze().numpy()
|
| 430 |
+
|
| 431 |
+
# Transcribe reference audio - use the local asr_model and asr_processor
|
| 432 |
# Remove language parameter if causing warnings
|
| 433 |
inputs = asr_processor(
|
| 434 |
+
ref_waveform,
|
| 435 |
sampling_rate=sample_rate,
|
| 436 |
return_tensors="pt"
|
| 437 |
)
|
|
|
|
| 440 |
with torch.no_grad():
|
| 441 |
logits = asr_model(**inputs).logits
|
| 442 |
ids = torch.argmax(logits, dim=-1)[0]
|
| 443 |
+
ref_transcription = asr_processor.decode(ids)
|
| 444 |
|
| 445 |
+
# Calculate similarity
|
| 446 |
+
similarity = calculate_similarity(user_transcription, ref_transcription)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
| 448 |
+
logger.info(
|
| 449 |
+
f"[{request_id}] π Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
|
| 451 |
+
return {
|
| 452 |
+
"reference_file": ref_filename,
|
| 453 |
+
"reference_text": ref_transcription,
|
| 454 |
+
"similarity_score": similarity
|
| 455 |
+
}
|
| 456 |
except Exception as e:
|
| 457 |
+
logger.error(f"[{request_id}] β Error processing {ref_filename}: {str(e)}")
|
| 458 |
+
return {
|
| 459 |
+
"reference_file": ref_filename,
|
| 460 |
+
"reference_text": "Error",
|
| 461 |
+
"similarity_score": 0,
|
| 462 |
+
"error": str(e)
|
| 463 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
|
| 465 |
+
# Process files in batches using ThreadPoolExecutor
|
| 466 |
+
with ThreadPoolExecutor(max_workers=batch_size) as executor:
|
| 467 |
+
batch_results = list(executor.map(process_reference_file, reference_files))
|
| 468 |
+
results.extend(batch_results)
|
| 469 |
+
|
| 470 |
+
# Find the best result
|
| 471 |
+
for result in batch_results:
|
| 472 |
+
if result["similarity_score"] > best_score:
|
| 473 |
+
best_score = result["similarity_score"]
|
| 474 |
+
best_reference = result["reference_file"]
|
| 475 |
+
best_transcription = result["reference_text"]
|
| 476 |
+
|
| 477 |
+
# Exit early if we found a very good match (optional)
|
| 478 |
+
if best_score > 80.0:
|
| 479 |
+
logger.info(f"[{request_id}] π Found excellent match: {best_score:.2f}%")
|
| 480 |
+
break
|
| 481 |
|
| 482 |
+
# Clean up temp files
|
| 483 |
+
try:
|
| 484 |
+
if temp_dir and os.path.exists(temp_dir):
|
| 485 |
+
shutil.rmtree(temp_dir)
|
| 486 |
+
logger.debug(f"[{request_id}] π§Ή Cleaned up temporary directory")
|
| 487 |
except Exception as e:
|
| 488 |
+
logger.warning(f"[{request_id}] β οΈ Failed to clean up temp files: {str(e)}")
|
| 489 |
+
|
| 490 |
+
# Determine feedback based on score
|
| 491 |
+
is_correct = best_score >= 70.0
|
| 492 |
+
|
| 493 |
+
if best_score >= 90.0:
|
| 494 |
+
feedback = "Perfect pronunciation! Excellent job!"
|
| 495 |
+
elif best_score >= 80.0:
|
| 496 |
+
feedback = "Great pronunciation! Your accent is very good."
|
| 497 |
+
elif best_score >= 70.0:
|
| 498 |
+
feedback = "Good pronunciation. Keep practicing!"
|
| 499 |
+
elif best_score >= 50.0:
|
| 500 |
+
feedback = "Fair attempt. Try focusing on the syllables that differ from the sample."
|
| 501 |
+
else:
|
| 502 |
+
feedback = "Try again. Listen carefully to the sample pronunciation."
|
| 503 |
+
|
| 504 |
+
logger.info(f"[{request_id}] π Final evaluation results: score={best_score:.2f}%, is_correct={is_correct}")
|
| 505 |
+
logger.info(f"[{request_id}] π Feedback: '{feedback}'")
|
| 506 |
+
logger.info(f"[{request_id}] β
Evaluation complete")
|
| 507 |
+
|
| 508 |
+
# Sort results by score descending
|
| 509 |
+
results.sort(key=lambda x: x["similarity_score"], reverse=True)
|
| 510 |
+
|
| 511 |
+
return jsonify({
|
| 512 |
+
"is_correct": is_correct,
|
| 513 |
+
"score": best_score,
|
| 514 |
+
"feedback": feedback,
|
| 515 |
+
"user_transcription": user_transcription,
|
| 516 |
+
"best_reference_transcription": best_transcription,
|
| 517 |
+
"reference_locator": reference_locator,
|
| 518 |
+
"details": results
|
| 519 |
+
})
|
| 520 |
+
|
| 521 |
+
except Exception as e:
|
| 522 |
+
logger.error(f"[{request_id}] β Unhandled exception in evaluation endpoint: {str(e)}")
|
| 523 |
+
logger.debug(f"[{request_id}] Stack trace: {traceback.format_exc()}")
|
| 524 |
+
|
| 525 |
+
# Clean up on error
|
| 526 |
+
try:
|
| 527 |
+
if temp_dir and os.path.exists(temp_dir):
|
| 528 |
+
shutil.rmtree(temp_dir)
|
| 529 |
+
except:
|
| 530 |
+
pass
|
| 531 |
|
| 532 |
+
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|