Update evaluate.py
Browse files- evaluate.py +369 -340
evaluate.py
CHANGED
@@ -1,341 +1,370 @@
|
|
1 |
-
# evaluate.py - Handles evaluation and comparing tasks
|
2 |
-
|
3 |
-
import os
|
4 |
-
import glob
|
5 |
-
import logging
|
6 |
-
import traceback
|
7 |
-
import tempfile
|
8 |
-
import shutil
|
9 |
-
from difflib import SequenceMatcher
|
10 |
-
import torch
|
11 |
-
import torchaudio
|
12 |
-
from pydub import AudioSegment
|
13 |
-
from flask import jsonify
|
14 |
-
from werkzeug.utils import secure_filename
|
15 |
-
from concurrent.futures import ThreadPoolExecutor
|
16 |
-
|
17 |
-
# Import necessary functions from translator.py
|
18 |
-
from translator import asr_model, asr_processor, LANGUAGE_CODES
|
19 |
-
|
20 |
-
# Configure logging
|
21 |
-
logger = logging.getLogger("speech_api")
|
22 |
-
|
23 |
-
def calculate_similarity(text1, text2):
|
24 |
-
"""Calculate text similarity percentage."""
|
25 |
-
def clean_text(text):
|
26 |
-
return text.lower()
|
27 |
-
|
28 |
-
clean1 = clean_text(text1)
|
29 |
-
clean2 = clean_text(text2)
|
30 |
-
|
31 |
-
matcher = SequenceMatcher(None, clean1, clean2)
|
32 |
-
return matcher.ratio() * 100
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
f"[{request_id}]
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
logger.
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
"
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
|
|
1 |
+
# evaluate.py - Handles evaluation and comparing tasks
|
2 |
+
|
3 |
+
import os
|
4 |
+
import glob
|
5 |
+
import logging
|
6 |
+
import traceback
|
7 |
+
import tempfile
|
8 |
+
import shutil
|
9 |
+
from difflib import SequenceMatcher
|
10 |
+
import torch
|
11 |
+
import torchaudio
|
12 |
+
from pydub import AudioSegment
|
13 |
+
from flask import jsonify
|
14 |
+
from werkzeug.utils import secure_filename
|
15 |
+
from concurrent.futures import ThreadPoolExecutor
|
16 |
+
|
17 |
+
# Import necessary functions from translator.py
|
18 |
+
from translator import asr_model, asr_processor, LANGUAGE_CODES
|
19 |
+
|
20 |
+
# Configure logging
|
21 |
+
logger = logging.getLogger("speech_api")
|
22 |
+
|
23 |
+
def calculate_similarity(text1, text2):
|
24 |
+
"""Calculate text similarity percentage."""
|
25 |
+
def clean_text(text):
|
26 |
+
return text.lower()
|
27 |
+
|
28 |
+
clean1 = clean_text(text1)
|
29 |
+
clean2 = clean_text(text2)
|
30 |
+
|
31 |
+
matcher = SequenceMatcher(None, clean1, clean2)
|
32 |
+
return matcher.ratio() * 100
|
33 |
+
|
34 |
+
# In evaluate.py, modify the init_reference_audio function
|
35 |
+
|
36 |
+
def init_reference_audio(reference_dir, output_dir):
|
37 |
+
try:
|
38 |
+
# Create the output directory first
|
39 |
+
os.makedirs(output_dir, exist_ok=True)
|
40 |
+
logger.info(f"π Created output directory: {output_dir}")
|
41 |
+
|
42 |
+
# Change reference_dir to be inside /tmp if the original location doesn't work
|
43 |
+
if not os.path.exists(reference_dir) or not os.access(os.path.dirname(reference_dir), os.W_OK):
|
44 |
+
# Use a directory in /tmp instead
|
45 |
+
new_reference_dir = os.path.join('/tmp', 'reference_audio')
|
46 |
+
logger.warning(f"β οΈ Changing reference directory from {reference_dir} to {new_reference_dir}")
|
47 |
+
reference_dir = new_reference_dir
|
48 |
+
|
49 |
+
# Check if the reference audio directory exists
|
50 |
+
if os.path.exists(reference_dir):
|
51 |
+
logger.info(f"β
Found reference audio directory: {reference_dir}")
|
52 |
+
|
53 |
+
# Log the contents to verify
|
54 |
+
pattern_dirs = [d for d in os.listdir(reference_dir)
|
55 |
+
if os.path.isdir(os.path.join(reference_dir, d))]
|
56 |
+
logger.info(f"π Found reference patterns: {pattern_dirs}")
|
57 |
+
|
58 |
+
# Check each pattern directory for wav files
|
59 |
+
for pattern_dir_name in pattern_dirs:
|
60 |
+
pattern_path = os.path.join(reference_dir, pattern_dir_name)
|
61 |
+
wav_files = glob.glob(os.path.join(pattern_path, "*.wav"))
|
62 |
+
logger.info(f"π Found {len(wav_files)} wav files in {pattern_dir_name}")
|
63 |
+
else:
|
64 |
+
logger.warning(f"β οΈ Reference audio directory not found: {reference_dir}")
|
65 |
+
# Create the directory if it doesn't exist
|
66 |
+
try:
|
67 |
+
os.makedirs(reference_dir, exist_ok=True)
|
68 |
+
logger.info(f"π Created reference audio directory: {reference_dir}")
|
69 |
+
except PermissionError:
|
70 |
+
logger.error(f"β Permission denied when creating {reference_dir}")
|
71 |
+
# Try alternate location in /tmp
|
72 |
+
reference_dir = os.path.join('/tmp', 'reference_audio')
|
73 |
+
os.makedirs(reference_dir, exist_ok=True)
|
74 |
+
logger.info(f"π Created reference audio directory in alternate location: {reference_dir}")
|
75 |
+
|
76 |
+
# Return the (possibly updated) reference directory path
|
77 |
+
return reference_dir
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"β Failed to set up reference audio directory: {str(e)}")
|
81 |
+
# Use /tmp as fallback
|
82 |
+
fallback_dir = os.path.join('/tmp', 'reference_audio')
|
83 |
+
try:
|
84 |
+
os.makedirs(fallback_dir, exist_ok=True)
|
85 |
+
logger.info(f"π Created fallback reference audio directory: {fallback_dir}")
|
86 |
+
return fallback_dir
|
87 |
+
except Exception as e2:
|
88 |
+
logger.critical(f"β Failed to create fallback directory: {str(e2)}")
|
89 |
+
return None
|
90 |
+
|
91 |
+
def handle_upload_reference(request, reference_dir, sample_rate):
|
92 |
+
"""Handle upload of reference audio files"""
|
93 |
+
try:
|
94 |
+
if "audio" not in request.files:
|
95 |
+
logger.warning("β οΈ Reference upload missing audio file")
|
96 |
+
return jsonify({"error": "No audio file uploaded"}), 400
|
97 |
+
|
98 |
+
reference_word = request.form.get("reference_word", "").strip()
|
99 |
+
if not reference_word:
|
100 |
+
logger.warning("β οΈ Reference upload missing reference word")
|
101 |
+
return jsonify({"error": "No reference word provided"}), 400
|
102 |
+
|
103 |
+
# Validate reference word
|
104 |
+
reference_patterns = [
|
105 |
+
"mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
|
106 |
+
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
|
107 |
+
"pagdulapan_da_ka", "kaluguran_da_ka", "dakal_a_salamat", "panapaya_mu_ku"
|
108 |
+
]
|
109 |
+
|
110 |
+
if reference_word not in reference_patterns:
|
111 |
+
logger.warning(f"β οΈ Invalid reference word: {reference_word}")
|
112 |
+
return jsonify({"error": f"Invalid reference word. Available: {reference_patterns}"}), 400
|
113 |
+
|
114 |
+
# Create directory for reference pattern if it doesn't exist
|
115 |
+
pattern_dir = os.path.join(reference_dir, reference_word)
|
116 |
+
os.makedirs(pattern_dir, exist_ok=True)
|
117 |
+
|
118 |
+
# Save the reference audio file
|
119 |
+
audio_file = request.files["audio"]
|
120 |
+
file_path = os.path.join(pattern_dir, secure_filename(audio_file.filename))
|
121 |
+
audio_file.save(file_path)
|
122 |
+
|
123 |
+
# Convert to WAV if not already in that format
|
124 |
+
if not file_path.lower().endswith('.wav'):
|
125 |
+
base_path = os.path.splitext(file_path)[0]
|
126 |
+
wav_path = f"{base_path}.wav"
|
127 |
+
try:
|
128 |
+
audio = AudioSegment.from_file(file_path)
|
129 |
+
audio = audio.set_frame_rate(sample_rate).set_channels(1)
|
130 |
+
audio.export(wav_path, format="wav")
|
131 |
+
# Remove original file if conversion successful
|
132 |
+
os.unlink(file_path)
|
133 |
+
file_path = wav_path
|
134 |
+
except Exception as e:
|
135 |
+
logger.error(f"β Reference audio conversion failed: {str(e)}")
|
136 |
+
return jsonify({"error": f"Audio conversion failed: {str(e)}"}), 500
|
137 |
+
|
138 |
+
logger.info(f"β
Reference audio saved successfully for {reference_word}: {file_path}")
|
139 |
+
|
140 |
+
# Count how many references we have now
|
141 |
+
references = glob.glob(os.path.join(pattern_dir, "*.wav"))
|
142 |
+
return jsonify({
|
143 |
+
"message": "Reference audio uploaded successfully",
|
144 |
+
"reference_word": reference_word,
|
145 |
+
"file": os.path.basename(file_path),
|
146 |
+
"total_references": len(references)
|
147 |
+
})
|
148 |
+
|
149 |
+
except Exception as e:
|
150 |
+
logger.error(f"β Unhandled exception in reference upload: {str(e)}")
|
151 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
152 |
+
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
153 |
+
|
154 |
+
|
155 |
+
def handle_evaluation_request(request, reference_dir, output_dir, sample_rate):
|
156 |
+
"""Handle pronunciation evaluation requests"""
|
157 |
+
request_id = f"req-{id(request)}" # Create unique ID for this request
|
158 |
+
logger.info(f"[{request_id}] π Starting new pronunciation evaluation request")
|
159 |
+
|
160 |
+
temp_dir = None
|
161 |
+
|
162 |
+
if asr_model is None or asr_processor is None:
|
163 |
+
logger.error(f"[{request_id}] β Evaluation endpoint called but ASR models aren't loaded")
|
164 |
+
return jsonify({"error": "ASR model not available"}), 503
|
165 |
+
|
166 |
+
try:
|
167 |
+
if "audio" not in request.files:
|
168 |
+
logger.warning(f"[{request_id}] β οΈ Evaluation request missing audio file")
|
169 |
+
return jsonify({"error": "No audio file uploaded"}), 400
|
170 |
+
|
171 |
+
audio_file = request.files["audio"]
|
172 |
+
reference_locator = request.form.get("reference_locator", "").strip()
|
173 |
+
language = request.form.get("language", "kapampangan").lower()
|
174 |
+
|
175 |
+
# Validate reference locator
|
176 |
+
if not reference_locator:
|
177 |
+
logger.warning(f"[{request_id}] β οΈ No reference locator provided")
|
178 |
+
return jsonify({"error": "Reference locator is required"}), 400
|
179 |
+
|
180 |
+
# Construct full reference directory path
|
181 |
+
reference_dir_path = os.path.join(reference_dir, reference_locator)
|
182 |
+
logger.info(f"[{request_id}] π Reference directory path: {reference_dir_path}")
|
183 |
+
|
184 |
+
if not os.path.exists(reference_dir_path):
|
185 |
+
logger.warning(f"[{request_id}] β οΈ Reference directory not found: {reference_dir_path}")
|
186 |
+
return jsonify({"error": f"Reference audio directory not found: {reference_locator}"}), 404
|
187 |
+
|
188 |
+
reference_files = glob.glob(os.path.join(reference_dir_path, "*.wav"))
|
189 |
+
logger.info(f"[{request_id}] π Found {len(reference_files)} reference files")
|
190 |
+
|
191 |
+
if not reference_files:
|
192 |
+
logger.warning(f"[{request_id}] β οΈ No reference audio files found in {reference_dir_path}")
|
193 |
+
return jsonify({"error": f"No reference audio found for {reference_locator}"}), 404
|
194 |
+
|
195 |
+
lang_code = LANGUAGE_CODES.get(language, language)
|
196 |
+
logger.info(
|
197 |
+
f"[{request_id}] π Evaluating pronunciation for reference: {reference_locator} with language code: {lang_code}")
|
198 |
+
|
199 |
+
# Create a request-specific temp directory to avoid conflicts
|
200 |
+
temp_dir = os.path.join(output_dir, f"temp_{request_id}")
|
201 |
+
os.makedirs(temp_dir, exist_ok=True)
|
202 |
+
|
203 |
+
# Process user audio
|
204 |
+
user_audio_path = os.path.join(temp_dir, "user_audio_input.wav")
|
205 |
+
with open(user_audio_path, 'wb') as f:
|
206 |
+
f.write(audio_file.read())
|
207 |
+
|
208 |
+
try:
|
209 |
+
logger.info(f"[{request_id}] π Processing user audio file")
|
210 |
+
audio = AudioSegment.from_file(user_audio_path)
|
211 |
+
audio = audio.set_frame_rate(sample_rate).set_channels(1)
|
212 |
+
|
213 |
+
processed_path = os.path.join(temp_dir, "processed_user_audio.wav")
|
214 |
+
audio.export(processed_path, format="wav")
|
215 |
+
|
216 |
+
user_waveform, sr = torchaudio.load(processed_path)
|
217 |
+
user_waveform = user_waveform.squeeze().numpy()
|
218 |
+
logger.info(f"[{request_id}] β
User audio processed: {sr}Hz, length: {len(user_waveform)} samples")
|
219 |
+
|
220 |
+
user_audio_path = processed_path
|
221 |
+
except Exception as e:
|
222 |
+
logger.error(f"[{request_id}] β Audio processing failed: {str(e)}")
|
223 |
+
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
|
224 |
+
|
225 |
+
# Transcribe user audio
|
226 |
+
try:
|
227 |
+
logger.info(f"[{request_id}] π Transcribing user audio")
|
228 |
+
inputs = asr_processor(
|
229 |
+
user_waveform,
|
230 |
+
sampling_rate=sample_rate,
|
231 |
+
return_tensors="pt",
|
232 |
+
language=lang_code
|
233 |
+
)
|
234 |
+
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
|
235 |
+
|
236 |
+
with torch.no_grad():
|
237 |
+
logits = asr_model(**inputs).logits
|
238 |
+
ids = torch.argmax(logits, dim=-1)[0]
|
239 |
+
user_transcription = asr_processor.decode(ids)
|
240 |
+
|
241 |
+
logger.info(f"[{request_id}] β
User transcription: '{user_transcription}'")
|
242 |
+
except Exception as e:
|
243 |
+
logger.error(f"[{request_id}] β ASR inference failed: {str(e)}")
|
244 |
+
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
|
245 |
+
|
246 |
+
# Process reference files in batches
|
247 |
+
batch_size = 2 # Process 2 files at a time - adjust based on your hardware
|
248 |
+
results = []
|
249 |
+
best_score = 0
|
250 |
+
best_reference = None
|
251 |
+
best_transcription = None
|
252 |
+
|
253 |
+
# Use this if you want to limit the number of files to process
|
254 |
+
max_files_to_check = min(5, len(reference_files)) # Check at most 5 files
|
255 |
+
reference_files = reference_files[:max_files_to_check]
|
256 |
+
|
257 |
+
logger.info(f"[{request_id}] π Processing {len(reference_files)} reference files in batches of {batch_size}")
|
258 |
+
|
259 |
+
# Function to process a single reference file
|
260 |
+
def process_reference_file(ref_file):
|
261 |
+
ref_filename = os.path.basename(ref_file)
|
262 |
+
try:
|
263 |
+
# Load and resample reference audio
|
264 |
+
ref_waveform, ref_sr = torchaudio.load(ref_file)
|
265 |
+
if ref_sr != sample_rate:
|
266 |
+
ref_waveform = torchaudio.transforms.Resample(ref_sr, sample_rate)(ref_waveform)
|
267 |
+
ref_waveform = ref_waveform.squeeze().numpy()
|
268 |
+
|
269 |
+
# Transcribe reference audio
|
270 |
+
inputs = asr_processor(
|
271 |
+
ref_waveform,
|
272 |
+
sampling_rate=sample_rate,
|
273 |
+
return_tensors="pt",
|
274 |
+
language=lang_code
|
275 |
+
)
|
276 |
+
inputs = {k: v.to(asr_model.device) for k, v in inputs.items()}
|
277 |
+
|
278 |
+
with torch.no_grad():
|
279 |
+
logits = asr_model(**inputs).logits
|
280 |
+
ids = torch.argmax(logits, dim=-1)[0]
|
281 |
+
ref_transcription = asr_processor.decode(ids)
|
282 |
+
|
283 |
+
# Calculate similarity
|
284 |
+
similarity = calculate_similarity(user_transcription, ref_transcription)
|
285 |
+
|
286 |
+
logger.info(
|
287 |
+
f"[{request_id}] π Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
|
288 |
+
|
289 |
+
return {
|
290 |
+
"reference_file": ref_filename,
|
291 |
+
"reference_text": ref_transcription,
|
292 |
+
"similarity_score": similarity
|
293 |
+
}
|
294 |
+
except Exception as e:
|
295 |
+
logger.error(f"[{request_id}] β Error processing {ref_filename}: {str(e)}")
|
296 |
+
return {
|
297 |
+
"reference_file": ref_filename,
|
298 |
+
"reference_text": "Error",
|
299 |
+
"similarity_score": 0,
|
300 |
+
"error": str(e)
|
301 |
+
}
|
302 |
+
|
303 |
+
# Process files in batches using ThreadPoolExecutor
|
304 |
+
with ThreadPoolExecutor(max_workers=batch_size) as executor:
|
305 |
+
batch_results = list(executor.map(process_reference_file, reference_files))
|
306 |
+
results.extend(batch_results)
|
307 |
+
|
308 |
+
# Find the best result
|
309 |
+
for result in batch_results:
|
310 |
+
if result["similarity_score"] > best_score:
|
311 |
+
best_score = result["similarity_score"]
|
312 |
+
best_reference = result["reference_file"]
|
313 |
+
best_transcription = result["reference_text"]
|
314 |
+
|
315 |
+
# Exit early if we found a very good match (optional)
|
316 |
+
if best_score > 80.0:
|
317 |
+
logger.info(f"[{request_id}] π Found excellent match: {best_score:.2f}%")
|
318 |
+
break
|
319 |
+
|
320 |
+
# Clean up temp files
|
321 |
+
try:
|
322 |
+
if temp_dir and os.path.exists(temp_dir):
|
323 |
+
shutil.rmtree(temp_dir)
|
324 |
+
logger.debug(f"[{request_id}] π§Ή Cleaned up temporary directory")
|
325 |
+
except Exception as e:
|
326 |
+
logger.warning(f"[{request_id}] β οΈ Failed to clean up temp files: {str(e)}")
|
327 |
+
|
328 |
+
# Determine feedback based on score
|
329 |
+
is_correct = best_score >= 70.0
|
330 |
+
|
331 |
+
if best_score >= 90.0:
|
332 |
+
feedback = "Perfect pronunciation! Excellent job!"
|
333 |
+
elif best_score >= 80.0:
|
334 |
+
feedback = "Great pronunciation! Your accent is very good."
|
335 |
+
elif best_score >= 70.0:
|
336 |
+
feedback = "Good pronunciation. Keep practicing!"
|
337 |
+
elif best_score >= 50.0:
|
338 |
+
feedback = "Fair attempt. Try focusing on the syllables that differ from the sample."
|
339 |
+
else:
|
340 |
+
feedback = "Try again. Listen carefully to the sample pronunciation."
|
341 |
+
|
342 |
+
logger.info(f"[{request_id}] π Final evaluation results: score={best_score:.2f}%, is_correct={is_correct}")
|
343 |
+
logger.info(f"[{request_id}] π Feedback: '{feedback}'")
|
344 |
+
logger.info(f"[{request_id}] β
Evaluation complete")
|
345 |
+
|
346 |
+
# Sort results by score descending
|
347 |
+
results.sort(key=lambda x: x["similarity_score"], reverse=True)
|
348 |
+
|
349 |
+
return jsonify({
|
350 |
+
"is_correct": is_correct,
|
351 |
+
"score": best_score,
|
352 |
+
"feedback": feedback,
|
353 |
+
"user_transcription": user_transcription,
|
354 |
+
"best_reference_transcription": best_transcription,
|
355 |
+
"reference_locator": reference_locator,
|
356 |
+
"details": results
|
357 |
+
})
|
358 |
+
|
359 |
+
except Exception as e:
|
360 |
+
logger.error(f"[{request_id}] β Unhandled exception in evaluation endpoint: {str(e)}")
|
361 |
+
logger.debug(f"[{request_id}] Stack trace: {traceback.format_exc()}")
|
362 |
+
|
363 |
+
# Clean up on error
|
364 |
+
try:
|
365 |
+
if temp_dir and os.path.exists(temp_dir):
|
366 |
+
shutil.rmtree(temp_dir)
|
367 |
+
except:
|
368 |
+
pass
|
369 |
+
|
370 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|