Spaces:
Sleeping
Sleeping
from sympy import symbols, Matrix, cos, sin, atan, sqrt, Rational | |
from sympy.core.sympify import sympify | |
from sympy.simplify.simplify import simplify | |
from sympy.solvers.solvers import solve | |
from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\ | |
dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\ | |
LagrangesMethod | |
from sympy.testing.pytest import slow | |
def test_linearize_rolling_disc_kane(): | |
# Symbols for time and constant parameters | |
t, r, m, g, v = symbols('t r m g v') | |
# Configuration variables and their time derivatives | |
q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7') | |
q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q] | |
# Generalized speeds and their time derivatives | |
u = dynamicsymbols('u:6') | |
u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7') | |
u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u] | |
# Reference frames | |
N = ReferenceFrame('N') # Inertial frame | |
NO = Point('NO') # Inertial origin | |
A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame | |
B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame | |
C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame | |
CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center | |
# Disc angular velocity in N expressed using time derivatives of coordinates | |
w_c_n_qd = C.ang_vel_in(N) | |
w_b_n_qd = B.ang_vel_in(N) | |
# Inertial angular velocity and angular acceleration of disc fixed frame | |
C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z) | |
# Disc center velocity in N expressed using time derivatives of coordinates | |
v_co_n_qd = CO.pos_from(NO).dt(N) | |
# Disc center velocity in N expressed using generalized speeds | |
CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z) | |
# Disc Ground Contact Point | |
P = CO.locatenew('P', r*B.z) | |
P.v2pt_theory(CO, N, C) | |
# Configuration constraint | |
f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)]) | |
# Velocity level constraints | |
f_v = Matrix([dot(P.vel(N), uv) for uv in C]) | |
# Kinematic differential equations | |
kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + | |
[dot(v_co_n_qd - CO.vel(N), uv) for uv in N]) | |
qdots = solve(kindiffs, qd) | |
# Set angular velocity of remaining frames | |
B.set_ang_vel(N, w_b_n_qd.subs(qdots)) | |
C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) | |
# Active forces | |
F_CO = m*g*A.z | |
# Create inertia dyadic of disc C about point CO | |
I = (m * r**2) / 4 | |
J = (m * r**2) / 2 | |
I_C_CO = inertia(C, I, J, I) | |
Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO)) | |
BL = [Disc] | |
FL = [(CO, F_CO)] | |
KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs, | |
q_dependent=[q6], configuration_constraints=f_c, | |
u_dependent=[u4, u5, u6], velocity_constraints=f_v) | |
(fr, fr_star) = KM.kanes_equations(BL, FL) | |
# Test generalized form equations | |
linearizer = KM.to_linearizer() | |
assert linearizer.f_c == f_c | |
assert linearizer.f_v == f_v | |
assert linearizer.f_a == f_v.diff(t).subs(KM.kindiffdict()) | |
sol = solve(linearizer.f_0 + linearizer.f_1, qd) | |
for qi in qdots.keys(): | |
assert sol[qi] == qdots[qi] | |
assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0]) | |
# Perform the linearization | |
# Precomputed operating point | |
q_op = {q6: -r*cos(q2)} | |
u_op = {u1: 0, | |
u2: sin(q2)*q1d + q3d, | |
u3: cos(q2)*q1d, | |
u4: -r*(sin(q2)*q1d + q3d)*cos(q3), | |
u5: 0, | |
u6: -r*(sin(q2)*q1d + q3d)*sin(q3)} | |
qd_op = {q2d: 0, | |
q4d: -r*(sin(q2)*q1d + q3d)*cos(q1), | |
q5d: -r*(sin(q2)*q1d + q3d)*sin(q1), | |
q6d: 0} | |
ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5, | |
u2d: 0, | |
u3d: 0, | |
u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2), | |
u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5), | |
u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)} | |
A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) | |
upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1} | |
# Precomputed solution | |
A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], | |
[0, 0, 0, 0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 1, 0], | |
[sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0], | |
[-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0], | |
[0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, -2*q3d, 0, 0]]) | |
B_sol = Matrix([]) | |
# Check that linearization is correct | |
assert A.subs(upright_nominal) == A_sol | |
assert B.subs(upright_nominal) == B_sol | |
# Check eigenvalues at critical speed are all zero: | |
assert sympify(A.subs(upright_nominal).subs(q3d, 1/sqrt(3))).eigenvals() == {0: 8} | |
# Check whether alternative solvers work | |
# symengine doesn't support method='GJ' | |
linearizer = KM.to_linearizer(linear_solver='GJ') | |
A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], | |
A_and_B=True, simplify=True) | |
assert A.subs(upright_nominal) == A_sol | |
assert B.subs(upright_nominal) == B_sol | |
def test_linearize_pendulum_kane_minimal(): | |
q1 = dynamicsymbols('q1') # angle of pendulum | |
u1 = dynamicsymbols('u1') # Angular velocity | |
q1d = dynamicsymbols('q1', 1) # Angular velocity | |
L, m, t = symbols('L, m, t') | |
g = 9.8 | |
# Compose world frame | |
N = ReferenceFrame('N') | |
pN = Point('N*') | |
pN.set_vel(N, 0) | |
# A.x is along the pendulum | |
A = N.orientnew('A', 'axis', [q1, N.z]) | |
A.set_ang_vel(N, u1*N.z) | |
# Locate point P relative to the origin N* | |
P = pN.locatenew('P', L*A.x) | |
P.v2pt_theory(pN, N, A) | |
pP = Particle('pP', P, m) | |
# Create Kinematic Differential Equations | |
kde = Matrix([q1d - u1]) | |
# Input the force resultant at P | |
R = m*g*N.x | |
# Solve for eom with kanes method | |
KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) | |
(fr, frstar) = KM.kanes_equations([pP], [(P, R)]) | |
# Linearize | |
A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) | |
assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) | |
assert B == Matrix([]) | |
def test_linearize_pendulum_kane_nonminimal(): | |
# Create generalized coordinates and speeds for this non-minimal realization | |
# q1, q2 = N.x and N.y coordinates of pendulum | |
# u1, u2 = N.x and N.y velocities of pendulum | |
q1, q2 = dynamicsymbols('q1:3') | |
q1d, q2d = dynamicsymbols('q1:3', level=1) | |
u1, u2 = dynamicsymbols('u1:3') | |
u1d, u2d = dynamicsymbols('u1:3', level=1) | |
L, m, t = symbols('L, m, t') | |
g = 9.8 | |
# Compose world frame | |
N = ReferenceFrame('N') | |
pN = Point('N*') | |
pN.set_vel(N, 0) | |
# A.x is along the pendulum | |
theta1 = atan(q2/q1) | |
A = N.orientnew('A', 'axis', [theta1, N.z]) | |
# Locate the pendulum mass | |
P = pN.locatenew('P1', q1*N.x + q2*N.y) | |
pP = Particle('pP', P, m) | |
# Calculate the kinematic differential equations | |
kde = Matrix([q1d - u1, | |
q2d - u2]) | |
dq_dict = solve(kde, [q1d, q2d]) | |
# Set velocity of point P | |
P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict)) | |
# Configuration constraint is length of pendulum | |
f_c = Matrix([P.pos_from(pN).magnitude() - L]) | |
# Velocity constraint is that the velocity in the A.x direction is | |
# always zero (the pendulum is never getting longer). | |
f_v = Matrix([P.vel(N).express(A).dot(A.x)]) | |
f_v.simplify() | |
# Acceleration constraints is the time derivative of the velocity constraint | |
f_a = f_v.diff(t) | |
f_a.simplify() | |
# Input the force resultant at P | |
R = m*g*N.x | |
# Derive the equations of motion using the KanesMethod class. | |
KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1], | |
u_dependent=[u1], configuration_constraints=f_c, | |
velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde) | |
(fr, frstar) = KM.kanes_equations([pP], [(P, R)]) | |
# Set the operating point to be straight down, and non-moving | |
q_op = {q1: L, q2: 0} | |
u_op = {u1: 0, u2: 0} | |
ud_op = {u1d: 0, u2d: 0} | |
A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, | |
simplify=True) | |
assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) | |
assert B == Matrix([]) | |
# symengine doesn't support method='GJ' | |
A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, | |
simplify=True, linear_solver='GJ') | |
assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) | |
assert B == Matrix([]) | |
A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], | |
A_and_B=True, | |
simplify=True, | |
linear_solver=lambda A, b: A.LUsolve(b)) | |
assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) | |
assert B == Matrix([]) | |
def test_linearize_pendulum_lagrange_minimal(): | |
q1 = dynamicsymbols('q1') # angle of pendulum | |
q1d = dynamicsymbols('q1', 1) # Angular velocity | |
L, m, t = symbols('L, m, t') | |
g = 9.8 | |
# Compose world frame | |
N = ReferenceFrame('N') | |
pN = Point('N*') | |
pN.set_vel(N, 0) | |
# A.x is along the pendulum | |
A = N.orientnew('A', 'axis', [q1, N.z]) | |
A.set_ang_vel(N, q1d*N.z) | |
# Locate point P relative to the origin N* | |
P = pN.locatenew('P', L*A.x) | |
P.v2pt_theory(pN, N, A) | |
pP = Particle('pP', P, m) | |
# Solve for eom with Lagranges method | |
Lag = Lagrangian(N, pP) | |
LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N) | |
LM.form_lagranges_equations() | |
# Linearize | |
A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True) | |
assert simplify(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) | |
assert B == Matrix([]) | |
# Check an alternative solver | |
A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True, linear_solver='GJ') | |
assert simplify(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) | |
assert B == Matrix([]) | |
def test_linearize_pendulum_lagrange_nonminimal(): | |
q1, q2 = dynamicsymbols('q1:3') | |
q1d, q2d = dynamicsymbols('q1:3', level=1) | |
L, m, t = symbols('L, m, t') | |
g = 9.8 | |
# Compose World Frame | |
N = ReferenceFrame('N') | |
pN = Point('N*') | |
pN.set_vel(N, 0) | |
# A.x is along the pendulum | |
theta1 = atan(q2/q1) | |
A = N.orientnew('A', 'axis', [theta1, N.z]) | |
# Create point P, the pendulum mass | |
P = pN.locatenew('P1', q1*N.x + q2*N.y) | |
P.set_vel(N, P.pos_from(pN).dt(N)) | |
pP = Particle('pP', P, m) | |
# Constraint Equations | |
f_c = Matrix([q1**2 + q2**2 - L**2]) | |
# Calculate the lagrangian, and form the equations of motion | |
Lag = Lagrangian(N, pP) | |
LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) | |
LM.form_lagranges_equations() | |
# Compose operating point | |
op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0} | |
# Solve for multiplier operating point | |
lam_op = LM.solve_multipliers(op_point=op_point) | |
op_point.update(lam_op) | |
# Perform the Linearization | |
A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], | |
op_point=op_point, A_and_B=True) | |
assert simplify(A) == Matrix([[0, 1], [-9.8/L, 0]]) | |
assert B == Matrix([]) | |
# Check if passing a function to linear_solver works | |
A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point, | |
A_and_B=True, linear_solver=lambda A, b: | |
A.LUsolve(b)) | |
assert simplify(A) == Matrix([[0, 1], [-9.8/L, 0]]) | |
assert B == Matrix([]) | |
def test_linearize_rolling_disc_lagrange(): | |
q1, q2, q3 = q = dynamicsymbols('q1 q2 q3') | |
q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1) | |
r, m, g = symbols('r m g') | |
N = ReferenceFrame('N') | |
Y = N.orientnew('Y', 'Axis', [q1, N.z]) | |
L = Y.orientnew('L', 'Axis', [q2, Y.x]) | |
R = L.orientnew('R', 'Axis', [q3, L.y]) | |
C = Point('C') | |
C.set_vel(N, 0) | |
Dmc = C.locatenew('Dmc', r * L.z) | |
Dmc.v2pt_theory(C, N, R) | |
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) | |
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) | |
BodyD.potential_energy = - m * g * r * cos(q2) | |
Lag = Lagrangian(N, BodyD) | |
l = LagrangesMethod(Lag, q) | |
l.form_lagranges_equations() | |
# Linearize about steady-state upright rolling | |
op_point = {q1: 0, q2: 0, q3: 0, | |
q1d: 0, q2d: 0, | |
q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0} | |
A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0] | |
sol = Matrix([[0, 0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 1, 0], | |
[0, 0, 0, 0, 0, 1], | |
[0, 0, 0, 0, -6*q3d, 0], | |
[0, -4*g/(5*r), 0, 6*q3d/5, 0, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
assert A == sol | |