from sympy import symbols, Matrix, cos, sin, atan, sqrt, Rational from sympy.core.sympify import sympify from sympy.simplify.simplify import simplify from sympy.solvers.solvers import solve from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\ dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\ LagrangesMethod from sympy.testing.pytest import slow @slow def test_linearize_rolling_disc_kane(): # Symbols for time and constant parameters t, r, m, g, v = symbols('t r m g v') # Configuration variables and their time derivatives q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7') q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q] # Generalized speeds and their time derivatives u = dynamicsymbols('u:6') u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7') u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u] # Reference frames N = ReferenceFrame('N') # Inertial frame NO = Point('NO') # Inertial origin A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center # Disc angular velocity in N expressed using time derivatives of coordinates w_c_n_qd = C.ang_vel_in(N) w_b_n_qd = B.ang_vel_in(N) # Inertial angular velocity and angular acceleration of disc fixed frame C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z) # Disc center velocity in N expressed using time derivatives of coordinates v_co_n_qd = CO.pos_from(NO).dt(N) # Disc center velocity in N expressed using generalized speeds CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z) # Disc Ground Contact Point P = CO.locatenew('P', r*B.z) P.v2pt_theory(CO, N, C) # Configuration constraint f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)]) # Velocity level constraints f_v = Matrix([dot(P.vel(N), uv) for uv in C]) # Kinematic differential equations kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_co_n_qd - CO.vel(N), uv) for uv in N]) qdots = solve(kindiffs, qd) # Set angular velocity of remaining frames B.set_ang_vel(N, w_b_n_qd.subs(qdots)) C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Active forces F_CO = m*g*A.z # Create inertia dyadic of disc C about point CO I = (m * r**2) / 4 J = (m * r**2) / 2 I_C_CO = inertia(C, I, J, I) Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO)) BL = [Disc] FL = [(CO, F_CO)] KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs, q_dependent=[q6], configuration_constraints=f_c, u_dependent=[u4, u5, u6], velocity_constraints=f_v) (fr, fr_star) = KM.kanes_equations(BL, FL) # Test generalized form equations linearizer = KM.to_linearizer() assert linearizer.f_c == f_c assert linearizer.f_v == f_v assert linearizer.f_a == f_v.diff(t).subs(KM.kindiffdict()) sol = solve(linearizer.f_0 + linearizer.f_1, qd) for qi in qdots.keys(): assert sol[qi] == qdots[qi] assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0]) # Perform the linearization # Precomputed operating point q_op = {q6: -r*cos(q2)} u_op = {u1: 0, u2: sin(q2)*q1d + q3d, u3: cos(q2)*q1d, u4: -r*(sin(q2)*q1d + q3d)*cos(q3), u5: 0, u6: -r*(sin(q2)*q1d + q3d)*sin(q3)} qd_op = {q2d: 0, q4d: -r*(sin(q2)*q1d + q3d)*cos(q1), q5d: -r*(sin(q2)*q1d + q3d)*sin(q1), q6d: 0} ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5, u2d: 0, u3d: 0, u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2), u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5), u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)} A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1} # Precomputed solution A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0], [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0], [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2*q3d, 0, 0]]) B_sol = Matrix([]) # Check that linearization is correct assert A.subs(upright_nominal) == A_sol assert B.subs(upright_nominal) == B_sol # Check eigenvalues at critical speed are all zero: assert sympify(A.subs(upright_nominal).subs(q3d, 1/sqrt(3))).eigenvals() == {0: 8} # Check whether alternative solvers work # symengine doesn't support method='GJ' linearizer = KM.to_linearizer(linear_solver='GJ') A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) assert A.subs(upright_nominal) == A_sol assert B.subs(upright_nominal) == B_sol def test_linearize_pendulum_kane_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum u1 = dynamicsymbols('u1') # Angular velocity q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, u1*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Create Kinematic Differential Equations kde = Matrix([q1d - u1]) # Input the force resultant at P R = m*g*N.x # Solve for eom with kanes method KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) (fr, frstar) = KM.kanes_equations([pP], [(P, R)]) # Linearize A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_kane_nonminimal(): # Create generalized coordinates and speeds for this non-minimal realization # q1, q2 = N.x and N.y coordinates of pendulum # u1, u2 = N.x and N.y velocities of pendulum q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) u1, u2 = dynamicsymbols('u1:3') u1d, u2d = dynamicsymbols('u1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Locate the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) pP = Particle('pP', P, m) # Calculate the kinematic differential equations kde = Matrix([q1d - u1, q2d - u2]) dq_dict = solve(kde, [q1d, q2d]) # Set velocity of point P P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict)) # Configuration constraint is length of pendulum f_c = Matrix([P.pos_from(pN).magnitude() - L]) # Velocity constraint is that the velocity in the A.x direction is # always zero (the pendulum is never getting longer). f_v = Matrix([P.vel(N).express(A).dot(A.x)]) f_v.simplify() # Acceleration constraints is the time derivative of the velocity constraint f_a = f_v.diff(t) f_a.simplify() # Input the force resultant at P R = m*g*N.x # Derive the equations of motion using the KanesMethod class. KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1], u_dependent=[u1], configuration_constraints=f_c, velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde) (fr, frstar) = KM.kanes_equations([pP], [(P, R)]) # Set the operating point to be straight down, and non-moving q_op = {q1: L, q2: 0} u_op = {u1: 0, u2: 0} ud_op = {u1d: 0, u2d: 0} A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True) assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) # symengine doesn't support method='GJ' A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True, linear_solver='GJ') assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True, linear_solver=lambda A, b: A.LUsolve(b)) assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, q1d*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Solve for eom with Lagranges method Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Linearize A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True) assert simplify(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) # Check an alternative solver A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True, linear_solver='GJ') assert simplify(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_nonminimal(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Compose operating point op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0} # Solve for multiplier operating point lam_op = LM.solve_multipliers(op_point=op_point) op_point.update(lam_op) # Perform the Linearization A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point, A_and_B=True) assert simplify(A) == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) # Check if passing a function to linear_solver works A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point, A_and_B=True, linear_solver=lambda A, b: A.LUsolve(b)) assert simplify(A) == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_rolling_disc_lagrange(): q1, q2, q3 = q = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) l = LagrangesMethod(Lag, q) l.form_lagranges_equations() # Linearize about steady-state upright rolling op_point = {q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0} A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0] sol = Matrix([[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -6*q3d, 0], [0, -4*g/(5*r), 0, 6*q3d/5, 0, 0], [0, 0, 0, 0, 0, 0]]) assert A == sol