File size: 13,273 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from sympy import symbols, Matrix, cos, sin, atan, sqrt, Rational
from sympy.core.sympify import sympify
from sympy.simplify.simplify import simplify
from sympy.solvers.solvers import solve
from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\
    dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\
    LagrangesMethod
from sympy.testing.pytest import slow


@slow
def test_linearize_rolling_disc_kane():
    # Symbols for time and constant parameters
    t, r, m, g, v = symbols('t r m g v')

    # Configuration variables and their time derivatives
    q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7')
    q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q]

    # Generalized speeds and their time derivatives
    u = dynamicsymbols('u:6')
    u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7')
    u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u]

    # Reference frames
    N = ReferenceFrame('N')                   # Inertial frame
    NO = Point('NO')                          # Inertial origin
    A = N.orientnew('A', 'Axis', [q1, N.z])   # Yaw intermediate frame
    B = A.orientnew('B', 'Axis', [q2, A.x])   # Lean intermediate frame
    C = B.orientnew('C', 'Axis', [q3, B.y])   # Disc fixed frame
    CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z)      # Disc center

    # Disc angular velocity in N expressed using time derivatives of coordinates
    w_c_n_qd = C.ang_vel_in(N)
    w_b_n_qd = B.ang_vel_in(N)

    # Inertial angular velocity and angular acceleration of disc fixed frame
    C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z)

    # Disc center velocity in N expressed using time derivatives of coordinates
    v_co_n_qd = CO.pos_from(NO).dt(N)

    # Disc center velocity in N expressed using generalized speeds
    CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z)

    # Disc Ground Contact Point
    P = CO.locatenew('P', r*B.z)
    P.v2pt_theory(CO, N, C)

    # Configuration constraint
    f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)])

    # Velocity level constraints
    f_v = Matrix([dot(P.vel(N), uv) for uv in C])

    # Kinematic differential equations
    kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
                        [dot(v_co_n_qd - CO.vel(N), uv) for uv in N])
    qdots = solve(kindiffs, qd)

    # Set angular velocity of remaining frames
    B.set_ang_vel(N, w_b_n_qd.subs(qdots))
    C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))

    # Active forces
    F_CO = m*g*A.z

    # Create inertia dyadic of disc C about point CO
    I = (m * r**2) / 4
    J = (m * r**2) / 2
    I_C_CO = inertia(C, I, J, I)

    Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO))
    BL = [Disc]
    FL = [(CO, F_CO)]
    KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs,
            q_dependent=[q6], configuration_constraints=f_c,
            u_dependent=[u4, u5, u6], velocity_constraints=f_v)
    (fr, fr_star) = KM.kanes_equations(BL, FL)

    # Test generalized form equations
    linearizer = KM.to_linearizer()
    assert linearizer.f_c == f_c
    assert linearizer.f_v == f_v
    assert linearizer.f_a == f_v.diff(t).subs(KM.kindiffdict())
    sol = solve(linearizer.f_0 + linearizer.f_1, qd)
    for qi in qdots.keys():
        assert sol[qi] == qdots[qi]
    assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0])

    # Perform the linearization
    # Precomputed operating point
    q_op = {q6: -r*cos(q2)}
    u_op = {u1: 0,
            u2: sin(q2)*q1d + q3d,
            u3: cos(q2)*q1d,
            u4: -r*(sin(q2)*q1d + q3d)*cos(q3),
            u5: 0,
            u6: -r*(sin(q2)*q1d + q3d)*sin(q3)}
    qd_op = {q2d: 0,
             q4d: -r*(sin(q2)*q1d + q3d)*cos(q1),
             q5d: -r*(sin(q2)*q1d + q3d)*sin(q1),
             q6d: 0}
    ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5,
             u2d: 0,
             u3d: 0,
             u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2),
             u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5),
             u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)}

    A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True)

    upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1}

    # Precomputed solution
    A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1],
                    [0, 0, 0, 0, 0, 1, 0, 0],
                    [0, 0, 0, 0, 0, 0, 1, 0],
                    [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0],
                    [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0],
                    [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5],
                    [0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, -2*q3d, 0, 0]])
    B_sol = Matrix([])

    # Check that linearization is correct
    assert A.subs(upright_nominal) == A_sol
    assert B.subs(upright_nominal) == B_sol

    # Check eigenvalues at critical speed are all zero:
    assert sympify(A.subs(upright_nominal).subs(q3d, 1/sqrt(3))).eigenvals() == {0: 8}

    # Check whether alternative solvers work
    # symengine doesn't support method='GJ'
    linearizer = KM.to_linearizer(linear_solver='GJ')
    A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op],
                                A_and_B=True, simplify=True)
    assert A.subs(upright_nominal) == A_sol
    assert B.subs(upright_nominal) == B_sol

def test_linearize_pendulum_kane_minimal():
    q1 = dynamicsymbols('q1')                     # angle of pendulum
    u1 = dynamicsymbols('u1')                     # Angular velocity
    q1d = dynamicsymbols('q1', 1)                 # Angular velocity
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    A = N.orientnew('A', 'axis', [q1, N.z])
    A.set_ang_vel(N, u1*N.z)

    # Locate point P relative to the origin N*
    P = pN.locatenew('P', L*A.x)
    P.v2pt_theory(pN, N, A)
    pP = Particle('pP', P, m)

    # Create Kinematic Differential Equations
    kde = Matrix([q1d - u1])

    # Input the force resultant at P
    R = m*g*N.x

    # Solve for eom with kanes method
    KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde)
    (fr, frstar) = KM.kanes_equations([pP], [(P, R)])

    # Linearize
    A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True)

    assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
    assert B == Matrix([])

def test_linearize_pendulum_kane_nonminimal():
    # Create generalized coordinates and speeds for this non-minimal realization
    # q1, q2 = N.x and N.y coordinates of pendulum
    # u1, u2 = N.x and N.y velocities of pendulum
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    u1, u2 = dynamicsymbols('u1:3')
    u1d, u2d = dynamicsymbols('u1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    theta1 = atan(q2/q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])

    # Locate the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    pP = Particle('pP', P, m)

    # Calculate the kinematic differential equations
    kde = Matrix([q1d - u1,
                  q2d - u2])
    dq_dict = solve(kde, [q1d, q2d])

    # Set velocity of point P
    P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict))

    # Configuration constraint is length of pendulum
    f_c = Matrix([P.pos_from(pN).magnitude() - L])

    # Velocity constraint is that the velocity in the A.x direction is
    # always zero (the pendulum is never getting longer).
    f_v = Matrix([P.vel(N).express(A).dot(A.x)])
    f_v.simplify()

    # Acceleration constraints is the time derivative of the velocity constraint
    f_a = f_v.diff(t)
    f_a.simplify()

    # Input the force resultant at P
    R = m*g*N.x

    # Derive the equations of motion using the KanesMethod class.
    KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1],
            u_dependent=[u1], configuration_constraints=f_c,
            velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde)
    (fr, frstar) = KM.kanes_equations([pP], [(P, R)])

    # Set the operating point to be straight down, and non-moving
    q_op = {q1: L, q2: 0}
    u_op = {u1: 0, u2: 0}
    ud_op = {u1d: 0, u2d: 0}

    A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True,
                                 simplify=True)

    assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])


    # symengine doesn't support method='GJ'
    A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True,
                                simplify=True, linear_solver='GJ')

    assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])

    A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op],
                                 A_and_B=True,
                                 simplify=True,
                                 linear_solver=lambda A, b: A.LUsolve(b))

    assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])


def test_linearize_pendulum_lagrange_minimal():
    q1 = dynamicsymbols('q1')                     # angle of pendulum
    q1d = dynamicsymbols('q1', 1)                 # Angular velocity
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    A = N.orientnew('A', 'axis', [q1, N.z])
    A.set_ang_vel(N, q1d*N.z)

    # Locate point P relative to the origin N*
    P = pN.locatenew('P', L*A.x)
    P.v2pt_theory(pN, N, A)
    pP = Particle('pP', P, m)

    # Solve for eom with Lagranges method
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()

    # Linearize
    A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)

    assert simplify(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
    assert B == Matrix([])

    # Check an alternative solver
    A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True, linear_solver='GJ')

    assert simplify(A) == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
    assert B == Matrix([])


def test_linearize_pendulum_lagrange_nonminimal():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # A.x is along the pendulum
    theta1 = atan(q2/q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Compose operating point
    op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
    # Solve for multiplier operating point
    lam_op = LM.solve_multipliers(op_point=op_point)
    op_point.update(lam_op)
    # Perform the Linearization
    A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
            op_point=op_point, A_and_B=True)
    assert simplify(A) == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])

    # Check if passing a function to linear_solver works
    A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point,
                                 A_and_B=True, linear_solver=lambda A, b:
                                 A.LUsolve(b))
    assert simplify(A) == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])

def test_linearize_rolling_disc_lagrange():
    q1, q2, q3 = q = dynamicsymbols('q1 q2 q3')
    q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])

    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyD.potential_energy = - m * g * r * cos(q2)

    Lag = Lagrangian(N, BodyD)
    l = LagrangesMethod(Lag, q)
    l.form_lagranges_equations()

    # Linearize about steady-state upright rolling
    op_point = {q1: 0, q2: 0, q3: 0,
                q1d: 0, q2d: 0,
                q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0}
    A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0]
    sol = Matrix([[0, 0, 0, 1, 0, 0],
                  [0, 0, 0, 0, 1, 0],
                  [0, 0, 0, 0, 0, 1],
                  [0, 0, 0, 0, -6*q3d, 0],
                  [0, -4*g/(5*r), 0, 6*q3d/5, 0, 0],
                  [0, 0, 0, 0, 0, 0]])

    assert A == sol