|
import streamlit as st |
|
|
|
|
|
st.sidebar.title("WhiteRabbitNeo Llama 3 WhiteRabbitNeo 8B V2.0") |
|
st.sidebar.markdown("**Welcome!** This Space showcases a powerful [**insert short description of your project here**].") |
|
|
|
st.sidebar.header("Instructions") |
|
st.sidebar.markdown(""" |
|
* **Enter your input** in the text area or upload a file. |
|
* **Adjust parameters** (if applicable) like temperature and max tokens. |
|
* **Click "Run Model"** to generate output. |
|
""") |
|
|
|
st.sidebar.header("About") |
|
st.sidebar.markdown(""" |
|
* **Model Type:** [Specify the type of model (e.g., NLP, Computer Vision)] |
|
* **Framework:** [Name of the deep learning framework used (e.g., TensorFlow, PyTorch)] |
|
* **Size:** [Indicate the model size (e.g., parameters, FLOPs)] |
|
""") |
|
|
|
|
|
st.title("Interact with the Model") |
|
|
|
|
|
st.header("Interact with the Model") |
|
|
|
|
|
user_input_text = st.text_area("Enter your text input here:", height=150) |
|
user_input_file = st.file_uploader("Upload a file (optional)", type=["txt", "pdf"]) |
|
|
|
if user_input_file is not None: |
|
user_input = user_input_file.getvalue().decode("utf-8") |
|
else: |
|
user_input = user_input_text |
|
|
|
|
|
if not user_input: |
|
st.warning("Please enter some input.") |
|
|
|
|
|
model_temperature = st.slider("Model Temperature", 0.0, 1.0, 0.7, 0.1) |
|
max_tokens = st.number_input("Max Tokens", min_value=10, max_value=1000, value=50) |
|
|
|
|
|
if st.button("Run Model"): |
|
if user_input: |
|
|
|
with st.spinner("Processing..."): |
|
import time |
|
time.sleep(2) |
|
|
|
|
|
|
|
model_output = process_input(user_input, temperature=model_temperature, max_tokens=max_tokens) |
|
|
|
|
|
st.success("Model Output:") |
|
st.text_area(model_output, height=200) |
|
|
|
|
|
def process_input(input_text, temperature, max_tokens): |
|
|
|
|
|
|
|
|
|
|
|
return f"This is a sample output based on: {input_text}, temperature: {temperature}, max_tokens: {max_tokens}" |
|
|
|
|