Canstralian commited on
Commit
e6fc0a8
·
verified ·
1 Parent(s): efe0070

Update app.py

Browse files

This code incorporates the best aspects of the previous responses, providing a well-structured Streamlit app with a dedicated sidebar for navigation and instructions, comprehensive user input handling, and a placeholder for your actual model processing logic. Remember to replace the placeholders and comments with your specific project details and model code. This will create a user-friendly and informative Streamlit app for your Hugging Face Space.

Files changed (1) hide show
  1. app.py +56 -22
app.py CHANGED
@@ -1,35 +1,69 @@
1
  import streamlit as st
2
 
3
- # Title and description
4
- st.title("WhiteRabbitNeo Llama 3 WhiteRabbitNeo 8B V2.0 🚀")
5
- st.write("This Space showcases WhiteRabbitNeo Llama 3 WhiteRabbitNeo 8B V2.0, a powerful [**insert short description of your project here**].")
6
 
7
- # User input section with clear instructions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  st.header("Interact with the Model")
9
- user_input = st.text_input("Enter your input here (e.g., text, image, code snippet)", key="user_input")
10
 
11
- # Optional: Input validation or guidance based on your project's requirements
12
- # You can use libraries like validators or custom logic to check input validity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- # Model processing and results section (replace with your specific logic)
15
  if st.button("Run Model"):
16
  if user_input:
17
  # Simulate model processing (replace with actual model call)
18
- processing_text = f"Processing your input: {user_input}..."
19
- st.info(processing_text)
20
- import time
21
- time.sleep(2) # Simulate processing time
22
 
23
- # Display model output (replace with your model's output format)
24
- output_text = "This is a sample model output based on your input."
25
- st.success(output_text)
26
- else:
27
- st.warning("Please enter some input to proceed.")
28
 
29
- # Additional sections for visualizations, explanations, or other functionalities (optional)
30
- # You can use Streamlit charts, images, and text to enhance user experience
 
31
 
32
- # Streamlit provides a variety of UI components like sliders, checkboxes, and radio buttons.
33
- # Choose the ones that best suit your project's interaction needs.
 
 
 
 
 
 
34
 
35
- # Emphasize clear explanations and informative messages throughout the app.
 
1
  import streamlit as st
2
 
3
+ # Sidebar with navigation and instructions
4
+ st.sidebar.title("WhiteRabbitNeo Llama 3 WhiteRabbitNeo 8B V2.0")
5
+ st.sidebar.markdown("**Welcome!** This Space showcases a powerful [**insert short description of your project here**].")
6
 
7
+ st.sidebar.header("Instructions")
8
+ st.sidebar.markdown("""
9
+ * **Enter your input** in the text area or upload a file.
10
+ * **Adjust parameters** (if applicable) like temperature and max tokens.
11
+ * **Click "Run Model"** to generate output.
12
+ """)
13
+
14
+ st.sidebar.header("About")
15
+ st.sidebar.markdown("""
16
+ * **Model Type:** [Specify the type of model (e.g., NLP, Computer Vision)]
17
+ * **Framework:** [Name of the deep learning framework used (e.g., TensorFlow, PyTorch)]
18
+ * **Size:** [Indicate the model size (e.g., parameters, FLOPs)]
19
+ """)
20
+
21
+ # Main content area
22
+ st.title("Interact with the Model")
23
+
24
+ # User input section with enhanced features
25
  st.header("Interact with the Model")
 
26
 
27
+ # 1. Multiple Input Types
28
+ user_input_text = st.text_area("Enter your text input here:", height=150)
29
+ user_input_file = st.file_uploader("Upload a file (optional)", type=["txt", "pdf"])
30
+
31
+ if user_input_file is not None:
32
+ user_input = user_input_file.getvalue().decode("utf-8")
33
+ else:
34
+ user_input = user_input_text
35
+
36
+ # 2. Input Validation and Guidance
37
+ if not user_input:
38
+ st.warning("Please enter some input.")
39
+
40
+ # 3. Parameter Control (if applicable)
41
+ model_temperature = st.slider("Model Temperature", 0.0, 1.0, 0.7, 0.1)
42
+ max_tokens = st.number_input("Max Tokens", min_value=10, max_value=1000, value=50)
43
 
44
+ # Model processing and results section
45
  if st.button("Run Model"):
46
  if user_input:
47
  # Simulate model processing (replace with actual model call)
48
+ with st.spinner("Processing..."):
49
+ import time
50
+ time.sleep(2) # Simulate processing time
 
51
 
52
+ # Example: Incorporate parameters into model call
53
+ # (Replace with your actual model logic)
54
+ model_output = process_input(user_input, temperature=model_temperature, max_tokens=max_tokens)
 
 
55
 
56
+ # Display model output
57
+ st.success("Model Output:")
58
+ st.text_area(model_output, height=200)
59
 
60
+ # Helper function for model processing (replace with your actual model logic)
61
+ def process_input(input_text, temperature, max_tokens):
62
+ # This is a placeholder.
63
+ # Replace with your actual model interaction logic here.
64
+ # Example:
65
+ # import your model
66
+ # generate output using model.generate(input_text, temperature=temperature, max_tokens=max_tokens)
67
+ return f"This is a sample output based on: {input_text}, temperature: {temperature}, max_tokens: {max_tokens}"
68
 
69
+ # Additional sections for visualizations, explanations, or other functionalities (optional)