import streamlit as st # Sidebar with navigation and instructions st.sidebar.title("WhiteRabbitNeo Llama 3 WhiteRabbitNeo 8B V2.0") st.sidebar.markdown("**Welcome!** This Space showcases a powerful [**insert short description of your project here**].") st.sidebar.header("Instructions") st.sidebar.markdown(""" * **Enter your input** in the text area or upload a file. * **Adjust parameters** (if applicable) like temperature and max tokens. * **Click "Run Model"** to generate output. """) st.sidebar.header("About") st.sidebar.markdown(""" * **Model Type:** [Specify the type of model (e.g., NLP, Computer Vision)] * **Framework:** [Name of the deep learning framework used (e.g., TensorFlow, PyTorch)] * **Size:** [Indicate the model size (e.g., parameters, FLOPs)] """) # Main content area st.title("Interact with the Model") # User input section with enhanced features st.header("Interact with the Model") # 1. Multiple Input Types user_input_text = st.text_area("Enter your text input here:", height=150) user_input_file = st.file_uploader("Upload a file (optional)", type=["txt", "pdf"]) if user_input_file is not None: user_input = user_input_file.getvalue().decode("utf-8") else: user_input = user_input_text # 2. Input Validation and Guidance if not user_input: st.warning("Please enter some input.") # 3. Parameter Control (if applicable) model_temperature = st.slider("Model Temperature", 0.0, 1.0, 0.7, 0.1) max_tokens = st.number_input("Max Tokens", min_value=10, max_value=1000, value=50) # Model processing and results section if st.button("Run Model"): if user_input: # Simulate model processing (replace with actual model call) with st.spinner("Processing..."): import time time.sleep(2) # Simulate processing time # Example: Incorporate parameters into model call # (Replace with your actual model logic) model_output = process_input(user_input, temperature=model_temperature, max_tokens=max_tokens) # Display model output st.success("Model Output:") st.text_area(model_output, height=200) # Helper function for model processing (replace with your actual model logic) def process_input(input_text, temperature, max_tokens): # This is a placeholder. # Replace with your actual model interaction logic here. # Example: # import your model # generate output using model.generate(input_text, temperature=temperature, max_tokens=max_tokens) return f"This is a sample output based on: {input_text}, temperature: {temperature}, max_tokens: {max_tokens}" # Additional sections for visualizations, explanations, or other functionalities (optional)