Spaces:
Runtime error
Runtime error
File size: 28,498 Bytes
e0fbfa8 71817ec f340ee7 71817ec 519b16c da8be82 47688e3 65cf050 32ffd0d 71817ec 30bca94 5c5ea4a 32ffd0d 71817ec 550ed22 f6f4945 854197f f6f4945 854197f f6f4945 c281624 550ed22 f6f4945 550ed22 406b47b 58ad40d f6f4945 30bca94 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 c281624 f6f4945 c281624 f6f4945 c281624 f6f4945 c281624 f6f4945 c281624 f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 58ad40d f6f4945 23ece77 32ffd0d 550ed22 f6f4945 30bca94 f6f4945 30bca94 0f91544 30bca94 f6f4945 30bca94 c121bf6 550ed22 32ffd0d c121bf6 32ffd0d c281624 10fce6d 32ffd0d 30bca94 f6f4945 30bca94 c281624 30bca94 10fce6d 32ffd0d 10fce6d 32ffd0d 30bca94 32ffd0d 30bca94 32ffd0d 30bca94 c281624 30bca94 c281624 32ffd0d 30bca94 c281624 32ffd0d 30bca94 32ffd0d 10fce6d 32ffd0d c281624 30bca94 c281624 30bca94 32ffd0d 0f91544 30bca94 32ffd0d 10fce6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
import io
import zipfile
import tempfile
from datetime import datetime
import docx
from docx.shared import Inches, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
import os
# --- Global output components ---
model_completo_output = gr.HTML()
pareto_completo_output = gr.Plot()
model_simplificado_output = gr.HTML()
pareto_simplificado_output = gr.Plot()
equation_output = gr.HTML()
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
rsm_plot_output = gr.Plot()
plot_info = gr.Textbox(label="Información del Gráfico", value="Gráfico 1 de 9", interactive=False)
current_index_state = gr.State(0)
all_figures_state = gr.State([])
current_model_type_state = gr.State('simplified')
model_personalized_output = gr.HTML()
pareto_personalized_output = gr.Plot()
factor_checkboxes = gr.CheckboxGroup(["factors", "x1_sq", "x2_sq", "x3_sq"], label="Términos de Factores", value=["factors", "x1_sq", "x2_sq", "x3_sq"])
interaction_checkboxes = gr.CheckboxGroup(["x1x2", "x1x3", "x2x3"], label="Términos de Interacción")
# --- Clase RSM_BoxBehnken ---
class RSM_BoxBehnken:
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
"""
Inicializa la clase con los datos del diseño Box-Behnken.
"""
self.data = data.copy()
self.model = None
self.model_simplified = None
self.model_personalized = None # For personalized model
self.optimized_results = None
self.optimal_levels = None
self.all_figures_full = [] # Separate lists for different model plots
self.all_figures_simplified = []
self.all_figures_personalized = []
self.x1_name = x1_name
self.x2_name = x2_name
self.x3_name = x3_name
self.y_name = y_name
# Niveles originales de las variables
self.x1_levels = x1_levels
self.x2_levels = x2_levels
self.x3_levels = x3_levels
def get_levels(self, variable_name):
"""
Obtiene los niveles para una variable específica.
"""
levels = {self.x1_name: self.x1_levels, self.x2_name: self.x2_levels, self.x3_name: self.x3_levels}
return levels.get(variable_name)
def fit_model(self):
"""
Ajusta el modelo de segundo orden completo a los datos.
"""
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
self.model = smf.ols(formula, data=self.data).fit()
print("Modelo Completo:")
print(self.model.summary())
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
def fit_simplified_model(self):
"""
Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
"""
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)' # Adjusted formula to include x3^2
self.model_simplified = smf.ols(formula, data=self.data).fit()
print("\nModelo Simplificado:")
print(self.model_simplified.summary())
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
def optimize(self, method='Nelder-Mead'):
"""
Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
def objective_function(x):
return -self.model_simplified.predict(pd.DataFrame({
self.x1_name: [x[0]],
self.x2_name: [x[1]],
self.x3_name: [x[2]]
})).values[0]
bounds = [(-1, 1), (-1, 1), (-1, 1)]
x0 = [0, 0, 0]
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
self.optimal_levels = self.optimized_results.x
# Convertir niveles óptimos de codificados a naturales
optimal_levels_natural = [
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
]
# Crear la tabla de optimización
optimization_table = pd.DataFrame({
'Variable': [self.x1_name, self.x2_name, self.x3_name],
'Nivel Óptimo (Natural)': optimal_levels_natural,
'Nivel Óptimo (Codificado)': self.optimal_levels
})
return optimization_table.round(3) # Redondear a 3 decimales
def fit_personalized_model(self, formula):
"""
Ajusta un modelo personalizado de segundo orden a los datos, usando la formula dada.
"""
self.model_personalized = smf.ols(formula, data=self.data).fit()
print("\nModelo Personalizado:")
print(self.model_personalized.summary())
return self.model_personalized, self.pareto_chart(self.model_personalized, "Pareto - Modelo Personalizado")
def generate_all_plots(self):
"""
Genera todas las gráficas de RSM para todos los modelos.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
self.all_figures_full = [] # Reset lists for each model type
self.all_figures_simplified = []
self.all_figures_personalized = []
levels_to_plot_natural = { # Levels from data, as before
self.x1_name: sorted(list(set(self.data[self.x1_name]))),
self.x2_name: sorted(list(set(self.data[self.x2_name]))),
self.x3_name: sorted(list(set(self.data[self.x3_name])))
}
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
for level in levels_to_plot_natural[fixed_variable]:
fig_full = self.plot_rsm_individual(fixed_variable, level, model_type='full') # Pass model_type
if fig_full is not None:
self.all_figures_full.append(fig_full)
fig_simplified = self.plot_rsm_individual(fixed_variable, level, model_type='simplified') # Pass model_type
if fig_simplified is not None:
self.all_figures_simplified.append(fig_simplified)
if self.model_personalized is not None: # Generate personalized plots only if model exists
fig_personalized = self.plot_rsm_individual(fixed_variable, level, model_type='personalized') # Pass model_type
if fig_personalized is not None:
self.all_figures_personalized.append(fig_personalized)
def plot_rsm_individual(self, fixed_variable, fixed_level, model_type='simplified'): # Added model_type parameter
"""
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica y modelo.
"""
model_to_use = self.model_simplified # Default to simplified model
model_title_suffix = "(Modelo Simplificado)"
if model_type == 'full':
model_to_use = self.model
model_title_suffix = "(Modelo Completo)"
elif model_type == 'personalized':
if self.model_personalized is None:
print("Error: Modelo personalizado no ajustado.")
return None
model_to_use = self.model_personalized
model_title_suffix = "(Modelo Personalizado)"
if model_to_use is None: # Use model_to_use instead of self.model_simplified
print(f"Error: Ajusta el modelo {model_type} primero.") # More informative error message
return None
# Determinar las variables que varían y sus niveles naturales
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
# Establecer los niveles naturales para las variables que varían
x_natural_levels = self.get_levels(varying_variables[0])
y_natural_levels = self.get_levels(varying_variables[1])
# Crear una malla de puntos para las variables que varían (en unidades naturales)
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
# Convertir la malla de variables naturales a codificadas
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
y_grid_coded = self.natural_to_coded(y_range_natural, varying_variables[1])
# Crear un DataFrame para la predicción con variables codificadas
prediction_data = pd.DataFrame({
varying_variables[0]: x_grid_coded.flatten(),
varying_variables[1]: y_grid_coded.flatten(),
})
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
# Fijar la variable fija en el DataFrame de predicción
fixed_var_levels = self.get_levels(fixed_variable)
if len(fixed_var_levels) == 3: # Box-Behnken design levels
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
elif len(fixed_var_levels) > 0: # Use the closest level if not Box-Behnken
closest_level_coded = self.natural_to_coded(min(fixed_var_levels, key=lambda x:abs(x-fixed_level)), fixed_variable)
prediction_data[fixed_variable] = closest_level_coded
# Calcular los valores predichos
z_pred = model_to_use.predict(prediction_data).values.reshape(x_grid_coded.shape) # Use model_to_use here
# Filtrar por el nivel de la variable fija (en codificado)
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
# Filtrar por niveles válidos en las variables que varían
valid_levels = [-1, 0, 1]
experiments_data = subset_data[
subset_data[varying_variables[0]].isin(valid_levels) &
subset_data[varying_variables[1]].isin(valid_levels)
]
# Convertir coordenadas de experimentos a naturales
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
# Crear el gráfico de superficie con variables naturales en los ejes y transparencia
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
# --- Añadir cuadrícula a la superficie ---
# Líneas en la dirección x
for i in range(x_grid_natural.shape[0]):
fig.add_trace(go.Scatter3d(
x=x_grid_natural[i, :],
y=y_grid_natural[i, :],
z=z_pred[i, :],
mode='lines',
line=dict(color='gray', width=2),
showlegend=False,
hoverinfo='skip'
))
# Líneas en la dirección y
for j in range(x_grid_natural.shape[1]):
fig.add_trace(go.Scatter3d(
x=x_grid_natural[:, j],
y=y_grid_natural[:, j],
z=z_pred[:, j],
mode='lines',
line=dict(color='gray', width=2),
showlegend=False,
hoverinfo='skip'
))
# --- Fin de la adición de la cuadrícula ---
# Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
colors = px.colors.qualitative.Safe
point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]
fig.add_trace(go.Scatter3d(
x=experiments_x_natural,
y=experiments_y_natural,
z=experiments_data[self.y_name].round(3),
mode='markers+text',
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
text=point_labels,
textposition='top center',
name='Experimentos'
))
# Añadir etiquetas y título con variables naturales
fig.update_layout(
scene=dict(
xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
zaxis_title=self.y_name,
),
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) {model_title_suffix}</sup>", # Updated title
height=800,
width=1000,
showlegend=True
)
return fig
# --- Funciones para la Interfaz de Gradio ---
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
try:
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
data_list = [row.split(',') for row in data_str.strip().split('\n')]
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
data_loaded = pd.DataFrame(data_list, columns=column_names).apply(pd.to_numeric, errors='coerce')
if not all(col in data_loaded.columns for col in column_names): raise ValueError("Data format incorrect.")
global rsm, data
data = data_loaded # Assign loaded data to global data variable
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
return data.round(3), gr.update(visible=True)
except Exception as e:
error_message = f"Error loading data: {str(e)}"
print(error_message)
return None, gr.update(visible=False)
def fit_and_optimize_model():
if 'rsm' not in globals(): return [None]*11
model_completo, pareto_completo = rsm.fit_model()
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
optimization_table = rsm.optimize()
equation = rsm.get_simplified_equation()
prediction_table = rsm.generate_prediction_table()
contribution_table = rsm.calculate_contribution_percentage()
anova_table = rsm.calculate_detailed_anova()
rsm.generate_all_plots()
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
excel_path = rsm.save_tables_to_excel()
zip_path = rsm.save_figures_to_zip()
return (model_completo_output, pareto_completo, model_simplificado_output, pareto_simplificado, equation_output, optimization_table, prediction_table, contribution_table, anova_table, zip_path, excel_path)
def fit_custom_model(factor_checkboxes, interaction_checkboxes, model_personalized_output_component, pareto_personalized_output_component):
if 'rsm' not in globals(): return [None]*2
formula_parts = [rsm.x1_name, rsm.x2_name, rsm.x3_name] if "factors" in factor_checkboxes else []
if "x1_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x1_name}**2)')
if "x2_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x2_name}**2)')
if "x3_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x3_name}**2)')
if "x1x2" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x2_name}')
if "x1x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x3_name}')
if "x2x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x2_name}:{rsm.x3_name}')
formula = f'{rsm.y_name} ~ ' + ' + '.join(formula_parts) if formula_parts else f'{rsm.y_name} ~ 1'
custom_model, pareto_custom = rsm.fit_personalized_model(formula)
rsm.generate_all_plots()
return custom_model.summary().as_html(), pareto_custom
def show_plot(current_index, all_figures, model_type):
figure_list = rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized
if not figure_list: return None, f"No graphs for {model_type}.", current_index
selected_fig = figure_list[current_index]
plot_info_text = f"Gráfico {current_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})"
return selected_fig, plot_info_text, current_index
def navigate_plot(direction, current_index, all_figures, model_type):
figure_list = rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized
if not figure_list: return None, f"No graphs for {model_type}.", current_index
new_index = (current_index - 1) % len(figure_list) if direction == 'left' else (current_index + 1) % len(figure_list)
selected_fig = figure_list[new_index]
plot_info_text = f"Gráfico {new_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})"
return selected_fig, plot_info_text, current_index
def download_current_plot(all_figures, current_index, model_type):
figure_list = rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized
if not figure_list: return None
fig = figure_list[current_index]
img_bytes = rsm.save_fig_to_bytes(fig)
filename = f"Grafico_RSM_{model_type}_{current_index + 1}.png"
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(img_bytes)
return temp_file.name
def download_all_plots_zip(model_type):
if 'rsm' not in globals(): return None
if model_type == 'full': rsm.all_figures = rsm.all_figures_full
elif model_type == 'simplified': rsm.all_figures = rsm.all_figures_simplified
elif model_type == 'personalized': rsm.all_figures = rsm.all_figures_personalized
zip_path = rsm.save_figures_to_zip()
filename = f"Graficos_RSM_{model_type}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
return zip_path
def download_all_tables_excel():
if 'rsm' not in globals(): return None
return rsm.save_tables_to_excel()
def exportar_word(rsm_instance, tables_dict):
return rsm_instance.export_tables_to_word(tables_dict)
def create_gradio_interface():
global model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output, download_all_plots_button, download_excel_button, rsm_plot_output, plot_info, current_index_state, all_figures_state, current_model_type_state, model_personalized_output, pareto_personalized_output, factor_checkboxes, interaction_checkboxes
with gr.Blocks() as demo:
gr.Markdown("# Optimización de la Absorbancia usando RSM")
with gr.Row():
with gr.Column():
gr.Markdown("## Configuración del Diseño")
x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa_g_L")
x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Proteina_Pescado)", value="Proteina_Pescado_g_L")
x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Sulfato_Manganeso)", value="Sulfato_Manganeso_g_L")
y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. Absorbancia)", value="Abs_600nm")
x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="0, 5, 10")
x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0, 1.4, 3.2, 5")
x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.25, 0.5, 0.75")
data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=10, value="""Exp.,Glucosa_g_L,Proteina_Pescado_g_L,Sulfato_Manganeso_g_L,Abs_600nm
1,-1,-1,0,1.576
2,1,-1,0,1.474
3,-1,1,0,1.293
4,1,1,0,1.446
5,-1,0,-1,1.537
6,1,0,-1,1.415
7,-1,0,1,1.481
8,1,0,1,1.419
9,0,-1,-1,1.321
10,0,1,-1,1.224
11,0,-1,1,1.459
12,0,1,1,0.345
13,0,0,0,1.279
14,0,0,0,1.181
15,0,0,0,0.662,
16,-1,-1,0,1.760
17,1,-1,0,1.690
18,-1,1,0,1.485
19,1,1,0,1.658
20,-1,0,-1,1.728
21,1,0,-1,1.594
22,-1,0,1,1.673
23,1,0,1,1.607
24,0,-1,-1,1.531
25,0,1,-1,1.424
26,0,-1,1,1.595
27,0,1,1,0.344
28,0,0,0,1.477
29,0,0,0,1.257
30,0,0,0,0.660,
31,-1,-1,0,1.932
32,1,-1,0,1.780
33,-1,1,0,1.689
34,1,1,0,1.876
35,-1,0,-1,1.885
36,1,0,-1,1.824
37,-1,0,1,1.913
38,1,0,1,1.810
39,0,-1,-1,1.852
40,0,1,-1,1.694
41,0,1,1,1.831
42,0,1,1,0.347
43,0,0,0,1.752
44,0,0,0,1.367
45,0,0,0,0.656""")
load_button = gr.Button("Cargar Datos")
data_dropdown = gr.Dropdown(["All Data"], value="All Data", label="Seleccionar Datos")
with gr.Column():
gr.Markdown("## Datos Cargados")
data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
with gr.Row(visible=False) as analysis_row:
with gr.Column():
fit_button = gr.Button("Ajustar Modelo Simplificado y Completo")
gr.Markdown("**Modelo Completo**")
model_completo_output_comp = model_completo_output # Use global output_components
pareto_completo_output_comp = pareto_completo_output
gr.Markdown("**Modelo Simplificado**")
model_simplificado_output_comp = model_simplificado_output
pareto_simplificado_output_comp = pareto_simplificado_output
gr.Markdown("## Modelo Personalizado")
factor_checkboxes_comp = factor_checkboxes
interaction_checkboxes_comp = interaction_checkboxes
custom_model_button = gr.Button("Ajustar Modelo Personalizado")
model_personalized_output_comp = model_personalized_output
pareto_personalized_output_comp = pareto_personalized_output
gr.Markdown("**Ecuación del Modelo Simplificado**")
equation_output_comp = equation_output
optimization_table_output_comp = optimization_table_output
prediction_table_output_comp = prediction_table_output
contribution_table_output_comp = contribution_table_output
anova_table_output_comp = anova_table_output
gr.Markdown("## Descargar Todas las Tablas")
download_excel_button_comp = download_excel_button
download_word_button = gr.DownloadButton("Descargar Tablas en Word")
with gr.Column():
gr.Markdown("## Gráficos de Superficie de Respuesta")
model_type_radio = gr.Radio(["simplified", "full", "personalized"], value="simplified", label="Tipo de Modelo para Gráficos")
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L")
fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=0, maximum=10, step=0.1, value=5.0)
plot_button = gr.Button("Generar Gráficos")
with gr.Row():
left_button = gr.Button("<")
right_button = gr.Button(">")
download_plot_button_comp = gr.DownloadButton("Descargar Gráfico Actual (PNG)") # Defined HERE
download_all_plots_button_comp = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
rsm_plot_output_comp = rsm_plot_output
plot_info_comp = plot_info
current_index_state_comp = current_index_state
all_figures_state_comp = all_figures_state
current_model_type_state_comp = current_model_type_state
load_button.click(load_data, inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input], outputs=[data_output, analysis_row])
fit_button.click(fit_and_optimize_model, inputs=[], outputs=[model_completo_output_comp, pareto_completo_output_comp, model_simplificado_output_comp, pareto_simplificado_output_comp, equation_output_comp, optimization_table_output_comp, prediction_table_output_comp, contribution_table_output_comp, anova_table_output_comp, download_all_plots_button_comp, download_excel_button_comp])
custom_model_button.click(fit_custom_model, inputs=[factor_checkboxes_comp, interaction_checkboxes_comp, model_personalized_output_comp, pareto_personalized_output_comp], outputs=[model_personalized_output_comp, pareto_personalized_output_comp]) # Pass output components as input and output
plot_button.click(lambda fixed_var, fixed_lvl, model_type: show_plot(0, [], model_type) if not hasattr(rsm, 'all_figures_full') or not rsm.all_figures_full else show_plot(0, [], model_type) if model_type == 'full' and not rsm.all_figures_full else show_plot(0, [], model_type) if model_type == 'simplified' and not rsm.all_figures_simplified else show_plot(0, [], model_type) if model_type == 'personalized' and not rsm.all_figures_personalized else show_plot(0, rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized, model_type), inputs=[fixed_variable_input, fixed_level_input, model_type_radio], outputs=[rsm_plot_output_comp, plot_info_comp, current_index_state_comp, current_model_type_state_comp])
left_button.click(lambda current_index, all_figures, model_type: navigate_plot('left', current_index, all_figures, model_type), inputs=[current_index_state_comp, all_figures_state_comp, current_model_type_state_comp], outputs=[rsm_plot_output_comp, plot_info_comp, current_index_state_comp])
right_button.click(lambda current_index, all_figures, model_type: navigate_plot('right', current_index, all_figures, model_type), inputs=[current_index_state_comp, all_figures_state_comp, current_model_type_state_comp], outputs=[rsm_plot_output_comp, plot_info_comp, current_index_state_comp])
download_plot_button.click(download_current_plot, inputs=[all_figures_state_comp, current_index_state_comp, current_model_type_state_comp], outputs=download_plot_button_comp)
download_all_plots_button.click(lambda model_type: download_all_plots_zip(model_type), inputs=[current_model_type_state_comp], outputs=download_all_plots_button_comp)
download_excel_button.click(fn=lambda: download_all_tables_excel(), inputs=[], outputs=download_excel_button_comp)
download_word_button.click(exportar_word, inputs=[gr.State(rsm), gr.State(rsm.get_all_tables())], outputs=download_word_button) # Pass rsm instance and tables as state
return demo
# --- Función Principal ---
def main():
interface = create_gradio_interface()
interface.launch(share=True)
if __name__ == "__main__":
main() |