Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,297 +42,266 @@ interaction_checkboxes = gr.CheckboxGroup(["x1x2", "x1x3", "x2x3"], label="T茅rm
|
|
| 42 |
# --- Clase RSM_BoxBehnken ---
|
| 43 |
class RSM_BoxBehnken:
|
| 44 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
|
|
|
|
|
|
|
|
|
| 45 |
self.data = data.copy()
|
| 46 |
self.model = None
|
| 47 |
self.model_simplified = None
|
| 48 |
-
self.model_personalized = None
|
| 49 |
self.optimized_results = None
|
| 50 |
self.optimal_levels = None
|
| 51 |
-
self.all_figures_full = []
|
| 52 |
self.all_figures_simplified = []
|
| 53 |
self.all_figures_personalized = []
|
| 54 |
self.x1_name = x1_name
|
| 55 |
self.x2_name = x2_name
|
| 56 |
self.x3_name = x3_name
|
| 57 |
self.y_name = y_name
|
|
|
|
|
|
|
| 58 |
self.x1_levels = x1_levels
|
| 59 |
self.x2_levels = x2_levels
|
| 60 |
self.x3_levels = x3_levels
|
| 61 |
|
| 62 |
def get_levels(self, variable_name):
|
|
|
|
|
|
|
|
|
|
| 63 |
levels = {self.x1_name: self.x1_levels, self.x2_name: self.x2_levels, self.x3_name: self.x3_levels}
|
| 64 |
return levels.get(variable_name)
|
| 65 |
|
| 66 |
def fit_model(self):
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
self.model = smf.ols(formula, data=self.data).fit()
|
|
|
|
|
|
|
| 69 |
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
| 70 |
|
| 71 |
def fit_simplified_model(self):
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
|
|
|
|
|
|
| 74 |
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
| 75 |
|
| 76 |
def optimize(self, method='Nelder-Mead'):
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def objective_function(x):
|
| 79 |
-
return -self.model_simplified.predict(pd.DataFrame({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
bounds = [(-1, 1), (-1, 1), (-1, 1)]
|
| 81 |
x0 = [0, 0, 0]
|
|
|
|
| 82 |
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
def fit_personalized_model(self, formula):
|
|
|
|
|
|
|
|
|
|
| 88 |
self.model_personalized = smf.ols(formula, data=self.data).fit()
|
|
|
|
|
|
|
| 89 |
return self.model_personalized, self.pareto_chart(self.model_personalized, "Pareto - Modelo Personalizado")
|
| 90 |
|
| 91 |
def generate_all_plots(self):
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
self.all_figures_simplified = []
|
| 95 |
self.all_figures_personalized = []
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
| 98 |
for level in levels_to_plot_natural[fixed_variable]:
|
| 99 |
-
fig_full = self.plot_rsm_individual(fixed_variable, level, model_type='full')
|
| 100 |
-
if fig_full:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
if
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
|
|
|
|
|
|
| 112 |
x_natural_levels = self.get_levels(varying_variables[0])
|
| 113 |
y_natural_levels = self.get_levels(varying_variables[1])
|
|
|
|
|
|
|
| 114 |
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
| 115 |
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
| 116 |
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
|
|
|
|
|
|
| 117 |
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
| 118 |
-
y_grid_coded = self.natural_to_coded(
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
| 123 |
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
|
|
|
|
|
|
| 124 |
valid_levels = [-1, 0, 1]
|
| 125 |
-
experiments_data = subset_data[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
| 127 |
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
| 128 |
|
|
|
|
| 129 |
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
|
|
|
|
|
|
|
|
|
| 130 |
for i in range(x_grid_natural.shape[0]):
|
| 131 |
-
fig.add_trace(go.Scatter3d(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
for j in range(x_grid_natural.shape[1]):
|
| 133 |
-
fig.add_trace(go.Scatter3d(
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
colors = px.colors.qualitative.Safe
|
| 136 |
point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]
|
| 137 |
-
fig.add_trace(go.Scatter3d(x=experiments_x_natural, y=experiments_y_natural, z=experiments_data[self.y_name].round(3), mode='markers+text', marker=dict(size=4, color=colors[:len(experiments_x_natural)]), text=point_labels, textposition='top center', name='Experimentos'))
|
| 138 |
-
fig.update_layout(scene=dict(xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})", yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})", zaxis_title=self.y_name), title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) {model_title_suffix}</sup>", height=800, width=1000, showlegend=True)
|
| 139 |
-
return fig
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
fig.add_vline(x=t_critical, line_dash="dot", annotation_text=f"t cr铆tico = {t_critical:.3f}", annotation_position="bottom right")
|
| 165 |
return fig
|
| 166 |
|
| 167 |
-
def get_simplified_equation(self):
|
| 168 |
-
if self.model_simplified is None: return None
|
| 169 |
-
coefficients = self.model_simplified.params
|
| 170 |
-
equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"
|
| 171 |
-
for term, coef in coefficients.items():
|
| 172 |
-
if term != 'Intercept':
|
| 173 |
-
if term == f'{self.x1_name}': equation += f" + {coef:.3f}*{self.x1_name}"
|
| 174 |
-
elif term == f'{self.x2_name}': equation += f" + {coef:.3f}*{self.x2_name}"
|
| 175 |
-
elif term == f'{self.x3_name}': equation += f" + {coef:.3f}*{self.x3_name}"
|
| 176 |
-
elif term == f'I({self.x1_name} ** 2)': equation += f" + {coef:.3f}*{self.x1_name}^2"
|
| 177 |
-
elif term == f'I({self.x2_name} ** 2)': equation += f" + {coef:.3f}*{self.x2_name}^2"
|
| 178 |
-
elif term == f'I({self.x3_name} ** 2)': equation += f" + {coef:.3f}*{self.x3_name}^2"
|
| 179 |
-
return equation
|
| 180 |
-
|
| 181 |
-
def generate_prediction_table(self):
|
| 182 |
-
if self.model_simplified is None: return None
|
| 183 |
-
self.data['Predicho'] = self.model_simplified.predict(self.data)
|
| 184 |
-
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
|
| 185 |
-
return self.data[[self.y_name, 'Predicho', 'Residual']].round(3)
|
| 186 |
-
|
| 187 |
-
def calculate_contribution_percentage(self):
|
| 188 |
-
if self.model_simplified is None: return None
|
| 189 |
-
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
| 190 |
-
ss_total = anova_table['sum_sq'].sum()
|
| 191 |
-
contribution_table = pd.DataFrame({'Factor': [], 'Suma de Cuadrados': [], '% Contribuci贸n': []})
|
| 192 |
-
for index, row in anova_table.iterrows():
|
| 193 |
-
if index != 'Residual':
|
| 194 |
-
factor_name = index
|
| 195 |
-
if factor_name == f'I({self.x1_name} ** 2)': factor_name = f'{self.x1_name}^2'
|
| 196 |
-
elif factor_name == f'I({self.x2_name} ** 2)': factor_name = f'{self.x2_name}^2'
|
| 197 |
-
elif factor_name == f'I({self.x3_name} ** 2)': factor_name = f'{self.x3_name}^2'
|
| 198 |
-
ss_factor = row['sum_sq']
|
| 199 |
-
contribution_percentage = (ss_factor / ss_total) * 100
|
| 200 |
-
contribution_table = pd.concat([contribution_table, pd.DataFrame({'Factor': [factor_name], 'Suma de Cuadrados': [ss_factor], '% Contribuci贸n': [contribution_percentage]})], ignore_index=True)
|
| 201 |
-
return contribution_table.round(3)
|
| 202 |
-
|
| 203 |
-
def calculate_detailed_anova(self):
|
| 204 |
-
if self.model_simplified is None: return None
|
| 205 |
-
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
| 206 |
-
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
| 207 |
-
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
| 208 |
-
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
| 209 |
-
df_total = len(self.data) - 1
|
| 210 |
-
ss_regression = anova_reduced['sum_sq'][:-1].sum()
|
| 211 |
-
df_regression = len(anova_reduced) - 1
|
| 212 |
-
ss_residual = self.model_simplified.ssr
|
| 213 |
-
df_residual = self.model_simplified.df_resid
|
| 214 |
-
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
| 215 |
-
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum() * replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups if not replicas.empty else np.nan
|
| 216 |
-
df_pure_error = len(replicas) - replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups if not replicas.empty else np.nan
|
| 217 |
-
ss_lack_of_fit = ss_residual - ss_pure_error if not np.isnan(ss_pure_error) else np.nan
|
| 218 |
-
df_lack_of_fit = df_residual - df_pure_error if not np.isnan(df_pure_error) else np.nan
|
| 219 |
-
ms_regression = ss_regression / df_regression
|
| 220 |
-
ms_residual = ss_residual / df_residual
|
| 221 |
-
ms_lack_of_fit = np.nan
|
| 222 |
-
if not np.isnan(df_lack_of_fit) and df_lack_of_fit != 0:
|
| 223 |
-
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
| 224 |
-
ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(df_pure_error) else np.nan
|
| 225 |
-
f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) and not np.isnan(ms_pure_error) and ms_pure_error != 0 else np.nan
|
| 226 |
-
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) and not np.isnan(df_lack_of_fit) and not np.isnan(df_pure_error) else np.nan
|
| 227 |
-
|
| 228 |
-
detailed_anova_table = pd.DataFrame({
|
| 229 |
-
'Fuente de Variaci贸n': ['Regresi贸n', 'Curvatura', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'], # Curvature added here
|
| 230 |
-
'Suma de Cuadrados': [ss_regression, np.nan, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total], # ss_curvature removed from here
|
| 231 |
-
'Grados de Libertad': [df_regression, np.nan, df_residual, df_lack_of_fit, df_pure_error, df_total], # df_curvature removed from here
|
| 232 |
-
'Cuadrado Medio': [ms_regression, np.nan, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
|
| 233 |
-
'F': [np.nan, np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
|
| 234 |
-
'Valor p': [np.nan, np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
|
| 235 |
-
})
|
| 236 |
-
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
| 237 |
-
df_curvature = 3
|
| 238 |
-
detailed_anova_table.loc[1, ['Fuente de Variaci贸n', 'Suma de Cuadrados', 'Grados de Libertad', 'Cuadrado Medio']] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature] # Curvature row added here
|
| 239 |
-
|
| 240 |
-
return detailed_anova_table.round(3)
|
| 241 |
-
|
| 242 |
-
def get_all_tables(self):
|
| 243 |
-
prediction_table = self.generate_prediction_table()
|
| 244 |
-
contribution_table = self.calculate_contribution_percentage()
|
| 245 |
-
detailed_anova_table = self.calculate_detailed_anova()
|
| 246 |
-
return {'Predicciones': prediction_table, '% Contribuci贸n': contribution_table, 'ANOVA Detallada': detailed_anova_table}
|
| 247 |
-
|
| 248 |
-
def save_figures_to_zip(self):
|
| 249 |
-
if not self.all_figures_simplified and not self.all_figures_full and not self.all_figures_personalized: return None
|
| 250 |
-
zip_buffer = io.BytesIO()
|
| 251 |
-
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
|
| 252 |
-
for idx, fig in enumerate(self.all_figures_simplified, start=1):
|
| 253 |
-
img_bytes = fig.to_image(format="png")
|
| 254 |
-
zip_file.writestr(f'Grafico_Simplificado_{idx}.png', img_bytes)
|
| 255 |
-
for idx, fig in enumerate(self.all_figures_full, start=1):
|
| 256 |
-
img_bytes = fig.to_image(format="png")
|
| 257 |
-
zip_file.writestr(f'Grafico_Completo_{idx}.png', img_bytes)
|
| 258 |
-
for idx, fig in enumerate(self.all_figures_personalized, start=1):
|
| 259 |
-
img_bytes = fig.to_image(format="png")
|
| 260 |
-
zip_file.writestr(f'Grafico_Personalizado_{idx}.png', img_bytes)
|
| 261 |
-
zip_buffer.seek(0)
|
| 262 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as temp_file:
|
| 263 |
-
temp_file.write(zip_buffer.read())
|
| 264 |
-
temp_path = temp_file.name
|
| 265 |
-
return temp_path
|
| 266 |
-
|
| 267 |
-
def save_fig_to_bytes(self, fig):
|
| 268 |
-
return fig.to_image(format="png")
|
| 269 |
-
|
| 270 |
-
def save_all_figures_png(self):
|
| 271 |
-
png_paths = []
|
| 272 |
-
for idx, fig in enumerate(self.all_figures_simplified, start=1):
|
| 273 |
-
img_bytes = fig.to_image(format="png")
|
| 274 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
| 275 |
-
temp_file.write(img_bytes)
|
| 276 |
-
png_paths.append(temp_file.name)
|
| 277 |
-
for idx, fig in enumerate(self.all_figures_full, start=1):
|
| 278 |
-
img_bytes = fig.to_image(format="png")
|
| 279 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
| 280 |
-
temp_file.write(img_bytes)
|
| 281 |
-
png_paths.append(temp_file.name)
|
| 282 |
-
for idx, fig in enumerate(self.all_figures_personalized, start=1):
|
| 283 |
-
img_bytes = fig.to_image(format="png")
|
| 284 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
| 285 |
-
temp_file.write(img_bytes)
|
| 286 |
-
png_paths.append(temp_file.name)
|
| 287 |
-
return png_paths
|
| 288 |
-
|
| 289 |
-
def save_tables_to_excel(self):
|
| 290 |
-
tables = self.get_all_tables()
|
| 291 |
-
excel_buffer = io.BytesIO()
|
| 292 |
-
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
|
| 293 |
-
for sheet_name, table in tables.items():
|
| 294 |
-
table.to_excel(writer, sheet_name=sheet_name, index=False)
|
| 295 |
-
excel_buffer.seek(0)
|
| 296 |
-
excel_bytes = excel_buffer.read()
|
| 297 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file:
|
| 298 |
-
temp_file.write(excel_bytes)
|
| 299 |
-
temp_path = temp_file.name
|
| 300 |
-
return temp_path
|
| 301 |
-
|
| 302 |
-
def export_tables_to_word(self, tables_dict):
|
| 303 |
-
if not tables_dict: return None
|
| 304 |
-
doc = docx.Document()
|
| 305 |
-
style = doc.styles['Normal']
|
| 306 |
-
font = style.font
|
| 307 |
-
font.name = 'Times New Roman'
|
| 308 |
-
font.size = Pt(12)
|
| 309 |
-
titulo = doc.add_heading('Informe de Optimizaci贸n de Producci贸n de Absorbancia', 0)
|
| 310 |
-
titulo.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
|
| 311 |
-
doc.add_paragraph(f"Fecha: {datetime.now().strftime('%d/%m/%Y %H:%M')}").alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
|
| 312 |
-
doc.add_paragraph('\n')
|
| 313 |
-
for sheet_name, table in tables_dict.items():
|
| 314 |
-
doc.add_heading(sheet_name, level=1)
|
| 315 |
-
if table.empty:
|
| 316 |
-
doc.add_paragraph("No hay datos disponibles para esta tabla.")
|
| 317 |
-
continue
|
| 318 |
-
table_doc = doc.add_table(rows=1, cols=len(table.columns))
|
| 319 |
-
table_doc.style = 'Light List Accent 1'
|
| 320 |
-
hdr_cells = table_doc.rows[0].cells
|
| 321 |
-
for idx, col_name in enumerate(table.columns):
|
| 322 |
-
hdr_cells[idx].text = col_name
|
| 323 |
-
for _, row in table.iterrows():
|
| 324 |
-
row_cells = table_doc.add_row().cells
|
| 325 |
-
for idx, item in enumerate(row):
|
| 326 |
-
row_cells[idx].text = str(item)
|
| 327 |
-
doc.add_paragraph('\n')
|
| 328 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
|
| 329 |
-
doc.save(tmp.name)
|
| 330 |
-
tmp_path = tmp.name
|
| 331 |
-
return tmp_path
|
| 332 |
-
|
| 333 |
|
| 334 |
# --- Funciones para la Interfaz de Gradio ---
|
| 335 |
|
|
|
|
| 336 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
| 337 |
try:
|
| 338 |
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
|
|
@@ -340,9 +309,10 @@ def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x
|
|
| 340 |
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
|
| 341 |
data_list = [row.split(',') for row in data_str.strip().split('\n')]
|
| 342 |
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
|
| 343 |
-
|
| 344 |
-
if not all(col in
|
| 345 |
-
global rsm
|
|
|
|
| 346 |
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
| 347 |
return data.round(3), gr.update(visible=True)
|
| 348 |
except Exception as e:
|
|
@@ -364,7 +334,7 @@ def fit_and_optimize_model():
|
|
| 364 |
equation_formatted = f"### Ecuaci贸n del Modelo Simplificado:<br>{equation_formatted}"
|
| 365 |
excel_path = rsm.save_tables_to_excel()
|
| 366 |
zip_path = rsm.save_figures_to_zip()
|
| 367 |
-
return (model_completo.summary().as_html(), pareto_completo,
|
| 368 |
|
| 369 |
def fit_custom_model(factor_checkboxes, interaction_checkboxes, model_personalized_output_component, pareto_personalized_output_component):
|
| 370 |
if 'rsm' not in globals(): return [None]*2
|
|
@@ -393,7 +363,7 @@ def navigate_plot(direction, current_index, all_figures, model_type):
|
|
| 393 |
new_index = (current_index - 1) % len(figure_list) if direction == 'left' else (current_index + 1) % len(figure_list)
|
| 394 |
selected_fig = figure_list[new_index]
|
| 395 |
plot_info_text = f"Gr谩fico {new_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})"
|
| 396 |
-
return selected_fig, plot_info_text,
|
| 397 |
|
| 398 |
def download_current_plot(all_figures, current_index, model_type):
|
| 399 |
figure_list = rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized
|
|
@@ -479,7 +449,7 @@ def create_gradio_interface():
|
|
| 479 |
38,1,0,1,1.810
|
| 480 |
39,0,-1,-1,1.852
|
| 481 |
40,0,1,-1,1.694
|
| 482 |
-
41,0
|
| 483 |
42,0,1,1,0.347
|
| 484 |
43,0,0,0,1.752
|
| 485 |
44,0,0,0,1.367
|
|
@@ -531,7 +501,7 @@ def create_gradio_interface():
|
|
| 531 |
rsm_plot_output_comp = rsm_plot_output
|
| 532 |
plot_info_comp = plot_info
|
| 533 |
with gr.Row():
|
| 534 |
-
download_plot_button_comp = download_plot_button
|
| 535 |
download_all_plots_button_comp = download_all_plots_button
|
| 536 |
current_index_state_comp = current_index_state
|
| 537 |
all_figures_state_comp = all_figures_state
|
|
|
|
| 42 |
# --- Clase RSM_BoxBehnken ---
|
| 43 |
class RSM_BoxBehnken:
|
| 44 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
| 45 |
+
"""
|
| 46 |
+
Inicializa la clase con los datos del dise帽o Box-Behnken.
|
| 47 |
+
"""
|
| 48 |
self.data = data.copy()
|
| 49 |
self.model = None
|
| 50 |
self.model_simplified = None
|
| 51 |
+
self.model_personalized = None # For personalized model
|
| 52 |
self.optimized_results = None
|
| 53 |
self.optimal_levels = None
|
| 54 |
+
self.all_figures_full = [] # Separate lists for different model plots
|
| 55 |
self.all_figures_simplified = []
|
| 56 |
self.all_figures_personalized = []
|
| 57 |
self.x1_name = x1_name
|
| 58 |
self.x2_name = x2_name
|
| 59 |
self.x3_name = x3_name
|
| 60 |
self.y_name = y_name
|
| 61 |
+
|
| 62 |
+
# Niveles originales de las variables
|
| 63 |
self.x1_levels = x1_levels
|
| 64 |
self.x2_levels = x2_levels
|
| 65 |
self.x3_levels = x3_levels
|
| 66 |
|
| 67 |
def get_levels(self, variable_name):
|
| 68 |
+
"""
|
| 69 |
+
Obtiene los niveles para una variable espec铆fica.
|
| 70 |
+
"""
|
| 71 |
levels = {self.x1_name: self.x1_levels, self.x2_name: self.x2_levels, self.x3_name: self.x3_levels}
|
| 72 |
return levels.get(variable_name)
|
| 73 |
|
| 74 |
def fit_model(self):
|
| 75 |
+
"""
|
| 76 |
+
Ajusta el modelo de segundo orden completo a los datos.
|
| 77 |
+
"""
|
| 78 |
+
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
| 79 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
| 80 |
+
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
| 81 |
self.model = smf.ols(formula, data=self.data).fit()
|
| 82 |
+
print("Modelo Completo:")
|
| 83 |
+
print(self.model.summary())
|
| 84 |
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
| 85 |
|
| 86 |
def fit_simplified_model(self):
|
| 87 |
+
"""
|
| 88 |
+
Ajusta el modelo de segundo orden a los datos, eliminando t茅rminos no significativos.
|
| 89 |
+
"""
|
| 90 |
+
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
|
| 91 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)' # Adjusted formula to include x3^2
|
| 92 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
| 93 |
+
print("\nModelo Simplificado:")
|
| 94 |
+
print(self.model_simplified.summary())
|
| 95 |
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
| 96 |
|
| 97 |
def optimize(self, method='Nelder-Mead'):
|
| 98 |
+
"""
|
| 99 |
+
Encuentra los niveles 贸ptimos de los factores para maximizar la respuesta usando el modelo simplificado.
|
| 100 |
+
"""
|
| 101 |
+
if self.model_simplified is None:
|
| 102 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
| 103 |
+
return
|
| 104 |
+
|
| 105 |
def objective_function(x):
|
| 106 |
+
return -self.model_simplified.predict(pd.DataFrame({
|
| 107 |
+
self.x1_name: [x[0]],
|
| 108 |
+
self.x2_name: [x[1]],
|
| 109 |
+
self.x3_name: [x[2]]
|
| 110 |
+
})).values[0]
|
| 111 |
+
|
| 112 |
bounds = [(-1, 1), (-1, 1), (-1, 1)]
|
| 113 |
x0 = [0, 0, 0]
|
| 114 |
+
|
| 115 |
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
| 116 |
+
self.optimal_levels = self.optimized_results.x
|
| 117 |
+
|
| 118 |
+
# Convertir niveles 贸ptimos de codificados a naturales
|
| 119 |
+
optimal_levels_natural = [
|
| 120 |
+
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
|
| 121 |
+
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
|
| 122 |
+
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
|
| 123 |
+
]
|
| 124 |
+
# Crear la tabla de optimizaci贸n
|
| 125 |
+
optimization_table = pd.DataFrame({
|
| 126 |
+
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
| 127 |
+
'Nivel 脫ptimo (Natural)': optimal_levels_natural,
|
| 128 |
+
'Nivel 脫ptimo (Codificado)': self.optimal_levels
|
| 129 |
+
})
|
| 130 |
+
|
| 131 |
+
return optimization_table.round(3) # Redondear a 3 decimales
|
| 132 |
|
| 133 |
def fit_personalized_model(self, formula):
|
| 134 |
+
"""
|
| 135 |
+
Ajusta un modelo personalizado de segundo orden a los datos, usando la formula dada.
|
| 136 |
+
"""
|
| 137 |
self.model_personalized = smf.ols(formula, data=self.data).fit()
|
| 138 |
+
print("\nModelo Personalizado:")
|
| 139 |
+
print(self.model_personalized.summary())
|
| 140 |
return self.model_personalized, self.pareto_chart(self.model_personalized, "Pareto - Modelo Personalizado")
|
| 141 |
|
| 142 |
def generate_all_plots(self):
|
| 143 |
+
"""
|
| 144 |
+
Genera todas las gr谩ficas de RSM para todos los modelos.
|
| 145 |
+
"""
|
| 146 |
+
if self.model_simplified is None:
|
| 147 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
| 148 |
+
return
|
| 149 |
+
|
| 150 |
+
self.all_figures_full = [] # Reset lists for each model type
|
| 151 |
self.all_figures_simplified = []
|
| 152 |
self.all_figures_personalized = []
|
| 153 |
+
|
| 154 |
+
levels_to_plot_natural = { # Levels from data, as before
|
| 155 |
+
self.x1_name: sorted(list(set(self.data[self.x1_name]))),
|
| 156 |
+
self.x2_name: sorted(list(set(self.data[self.x2_name]))),
|
| 157 |
+
self.x3_name: sorted(list(set(self.data[self.x3_name])))
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
| 161 |
for level in levels_to_plot_natural[fixed_variable]:
|
| 162 |
+
fig_full = self.plot_rsm_individual(fixed_variable, level, model_type='full') # Pass model_type
|
| 163 |
+
if fig_full is not None:
|
| 164 |
+
self.all_figures_full.append(fig_full)
|
| 165 |
+
fig_simplified = self.plot_rsm_individual(fixed_variable, level, model_type='simplified') # Pass model_type
|
| 166 |
+
if fig_simplified is not None:
|
| 167 |
+
self.all_figures_simplified.append(fig_simplified)
|
| 168 |
+
if self.model_personalized is not None: # Generate personalized plots only if model exists
|
| 169 |
+
fig_personalized = self.plot_rsm_individual(fixed_variable, level, model_type='personalized') # Pass model_type
|
| 170 |
+
if fig_personalized is not None:
|
| 171 |
+
self.all_figures_personalized.append(fig_personalized)
|
| 172 |
+
|
| 173 |
+
def plot_rsm_individual(self, fixed_variable, fixed_level, model_type='simplified'): # Added model_type parameter
|
| 174 |
+
"""
|
| 175 |
+
Genera un gr谩fico de superficie de respuesta (RSM) individual para una configuraci贸n espec铆fica y modelo.
|
| 176 |
+
"""
|
| 177 |
+
model_to_use = self.model_simplified # Default to simplified model
|
| 178 |
+
model_title_suffix = "(Modelo Simplificado)"
|
| 179 |
+
if model_type == 'full':
|
| 180 |
+
model_to_use = self.model
|
| 181 |
+
model_title_suffix = "(Modelo Completo)"
|
| 182 |
+
elif model_type == 'personalized':
|
| 183 |
+
if self.model_personalized is None:
|
| 184 |
+
print("Error: Modelo personalizado no ajustado.")
|
| 185 |
+
return None
|
| 186 |
+
model_to_use = self.model_personalized
|
| 187 |
+
model_title_suffix = "(Modelo Personalizado)"
|
| 188 |
+
|
| 189 |
+
if model_to_use is None: # Use model_to_use instead of self.model_simplified
|
| 190 |
+
print(f"Error: Ajusta el modelo {model_type} primero.") # More informative error message
|
| 191 |
+
return None
|
| 192 |
+
|
| 193 |
+
# Determinar las variables que var铆an y sus niveles naturales
|
| 194 |
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
| 195 |
+
|
| 196 |
+
# Establecer los niveles naturales para las variables que var铆an
|
| 197 |
x_natural_levels = self.get_levels(varying_variables[0])
|
| 198 |
y_natural_levels = self.get_levels(varying_variables[1])
|
| 199 |
+
|
| 200 |
+
# Crear una malla de puntos para las variables que var铆an (en unidades naturales)
|
| 201 |
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
| 202 |
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
| 203 |
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
| 204 |
+
|
| 205 |
+
# Convertir la malla de variables naturales a codificadas
|
| 206 |
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
| 207 |
+
y_grid_coded = self.natural_to_coded(y_range_natural, varying_variables[1])
|
| 208 |
+
|
| 209 |
+
# Crear un DataFrame para la predicci贸n con variables codificadas
|
| 210 |
+
prediction_data = pd.DataFrame({
|
| 211 |
+
varying_variables[0]: x_grid_coded.flatten(),
|
| 212 |
+
varying_variables[1]: y_grid_coded.flatten(),
|
| 213 |
+
})
|
| 214 |
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
| 215 |
+
|
| 216 |
+
# Fijar la variable fija en el DataFrame de predicci贸n
|
| 217 |
+
fixed_var_levels = self.get_levels(fixed_variable)
|
| 218 |
+
if len(fixed_var_levels) == 3: # Box-Behnken design levels
|
| 219 |
+
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
| 220 |
+
elif len(fixed_var_levels) > 0: # Use the closest level if not Box-Behnken
|
| 221 |
+
closest_level_coded = self.natural_to_coded(min(fixed_var_levels, key=lambda x:abs(x-fixed_level)), fixed_variable)
|
| 222 |
+
prediction_data[fixed_variable] = closest_level_coded
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# Calcular los valores predichos
|
| 226 |
+
z_pred = model_to_use.predict(prediction_data).values.reshape(x_grid_coded.shape) # Use model_to_use here
|
| 227 |
+
|
| 228 |
+
# Filtrar por el nivel de la variable fija (en codificado)
|
| 229 |
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
| 230 |
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
| 231 |
+
|
| 232 |
+
# Filtrar por niveles v谩lidos en las variables que var铆an
|
| 233 |
valid_levels = [-1, 0, 1]
|
| 234 |
+
experiments_data = subset_data[
|
| 235 |
+
subset_data[varying_variables[0]].isin(valid_levels) &
|
| 236 |
+
subset_data[varying_variables[1]].isin(valid_levels)
|
| 237 |
+
]
|
| 238 |
+
|
| 239 |
+
# Convertir coordenadas de experimentos a naturales
|
| 240 |
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
| 241 |
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
| 242 |
|
| 243 |
+
# Crear el gr谩fico de superficie con variables naturales en los ejes y transparencia
|
| 244 |
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
| 245 |
+
|
| 246 |
+
# --- A帽adir cuadr铆cula a la superficie ---
|
| 247 |
+
# L铆neas en la direcci贸n x
|
| 248 |
for i in range(x_grid_natural.shape[0]):
|
| 249 |
+
fig.add_trace(go.Scatter3d(
|
| 250 |
+
x=x_grid_natural[i, :],
|
| 251 |
+
y=y_grid_natural[i, :],
|
| 252 |
+
z=z_pred[i, :],
|
| 253 |
+
mode='lines',
|
| 254 |
+
line=dict(color='gray', width=2),
|
| 255 |
+
showlegend=False,
|
| 256 |
+
hoverinfo='skip'
|
| 257 |
+
))
|
| 258 |
+
# L铆neas en la direcci贸n y
|
| 259 |
for j in range(x_grid_natural.shape[1]):
|
| 260 |
+
fig.add_trace(go.Scatter3d(
|
| 261 |
+
x=x_grid_natural[:, j],
|
| 262 |
+
y=y_grid_natural[:, j],
|
| 263 |
+
z=z_pred[:, j],
|
| 264 |
+
mode='lines',
|
| 265 |
+
line=dict(color='gray', width=2),
|
| 266 |
+
showlegend=False,
|
| 267 |
+
hoverinfo='skip'
|
| 268 |
+
))
|
| 269 |
+
|
| 270 |
+
# --- Fin de la adici贸n de la cuadr铆cula ---
|
| 271 |
+
|
| 272 |
+
# A帽adir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
|
| 273 |
colors = px.colors.qualitative.Safe
|
| 274 |
point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
+
fig.add_trace(go.Scatter3d(
|
| 277 |
+
x=experiments_x_natural,
|
| 278 |
+
y=experiments_y_natural,
|
| 279 |
+
z=experiments_data[self.y_name].round(3),
|
| 280 |
+
mode='markers+text',
|
| 281 |
+
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
|
| 282 |
+
text=point_labels,
|
| 283 |
+
textposition='top center',
|
| 284 |
+
name='Experimentos'
|
| 285 |
+
))
|
| 286 |
+
|
| 287 |
+
# A帽adir etiquetas y t铆tulo con variables naturales
|
| 288 |
+
fig.update_layout(
|
| 289 |
+
scene=dict(
|
| 290 |
+
xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
|
| 291 |
+
yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
|
| 292 |
+
zaxis_title=self.y_name,
|
| 293 |
+
),
|
| 294 |
+
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) {model_title_suffix}</sup>", # Updated title
|
| 295 |
+
height=800,
|
| 296 |
+
width=1000,
|
| 297 |
+
showlegend=True
|
| 298 |
+
)
|
|
|
|
| 299 |
return fig
|
| 300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
# --- Funciones para la Interfaz de Gradio ---
|
| 303 |
|
| 304 |
+
|
| 305 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
| 306 |
try:
|
| 307 |
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
|
|
|
|
| 309 |
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
|
| 310 |
data_list = [row.split(',') for row in data_str.strip().split('\n')]
|
| 311 |
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
|
| 312 |
+
data_loaded = pd.DataFrame(data_list, columns=column_names).apply(pd.to_numeric, errors='coerce')
|
| 313 |
+
if not all(col in data_loaded.columns for col in column_names): raise ValueError("Data format incorrect.")
|
| 314 |
+
global rsm, data
|
| 315 |
+
data = data_loaded # Assign loaded data to global data variable
|
| 316 |
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
| 317 |
return data.round(3), gr.update(visible=True)
|
| 318 |
except Exception as e:
|
|
|
|
| 334 |
equation_formatted = f"### Ecuaci贸n del Modelo Simplificado:<br>{equation_formatted}"
|
| 335 |
excel_path = rsm.save_tables_to_excel()
|
| 336 |
zip_path = rsm.save_figures_to_zip()
|
| 337 |
+
return (model_completo.summary().as_html(), pareto_completo, model_simplificado_output, pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table, zip_path, excel_path)
|
| 338 |
|
| 339 |
def fit_custom_model(factor_checkboxes, interaction_checkboxes, model_personalized_output_component, pareto_personalized_output_component):
|
| 340 |
if 'rsm' not in globals(): return [None]*2
|
|
|
|
| 363 |
new_index = (current_index - 1) % len(figure_list) if direction == 'left' else (current_index + 1) % len(figure_list)
|
| 364 |
selected_fig = figure_list[new_index]
|
| 365 |
plot_info_text = f"Gr谩fico {new_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})"
|
| 366 |
+
return selected_fig, plot_info_text, current_index
|
| 367 |
|
| 368 |
def download_current_plot(all_figures, current_index, model_type):
|
| 369 |
figure_list = rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized
|
|
|
|
| 449 |
38,1,0,1,1.810
|
| 450 |
39,0,-1,-1,1.852
|
| 451 |
40,0,1,-1,1.694
|
| 452 |
+
41,0,1,1,1.831
|
| 453 |
42,0,1,1,0.347
|
| 454 |
43,0,0,0,1.752
|
| 455 |
44,0,0,0,1.367
|
|
|
|
| 501 |
rsm_plot_output_comp = rsm_plot_output
|
| 502 |
plot_info_comp = plot_info
|
| 503 |
with gr.Row():
|
| 504 |
+
download_plot_button_comp = download_plot_button # Correctly assigned here now
|
| 505 |
download_all_plots_button_comp = download_all_plots_button
|
| 506 |
current_index_state_comp = current_index_state
|
| 507 |
all_figures_state_comp = all_figures_state
|