C2MV commited on
Commit
c281624
·
verified ·
1 Parent(s): fa99217

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +204 -670
app.py CHANGED
@@ -44,9 +44,12 @@ class RSM_BoxBehnken:
44
  self.data = data.copy()
45
  self.model = None
46
  self.model_simplified = None
 
47
  self.optimized_results = None
48
  self.optimal_levels = None
49
- self.all_figures = [] # Lista para almacenar las figuras
 
 
50
  self.x1_name = x1_name
51
  self.x2_name = x2_name
52
  self.x3_name = x3_name
@@ -57,615 +60,108 @@ class RSM_BoxBehnken:
57
  self.x2_levels = x2_levels
58
  self.x3_levels = x3_levels
59
 
60
- def get_levels(self, variable_name):
61
- """
62
- Obtiene los niveles para una variable específica.
63
- """
64
- if variable_name == self.x1_name:
65
- return self.x1_levels
66
- elif variable_name == self.x2_name:
67
- return self.x2_levels
68
- elif variable_name == self.x3_name:
69
- return self.x3_levels
70
- else:
71
- raise ValueError(f"Variable desconocida: {variable_name}")
72
-
73
- def fit_model(self):
74
- """
75
- Ajusta el modelo de segundo orden completo a los datos.
76
- """
77
- formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
78
- f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
79
- f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
80
- self.model = smf.ols(formula, data=self.data).fit()
81
- print("Modelo Completo:")
82
- print(self.model.summary())
83
- return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
84
-
85
- def fit_simplified_model(self):
86
  """
87
- Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
88
  """
89
- formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
90
- f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)' # Adjusted formula to include x3^2
91
- self.model_simplified = smf.ols(formula, data=self.data).fit()
92
- print("\nModelo Simplificado:")
93
- print(self.model_simplified.summary())
94
- return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
95
-
96
- def optimize(self, method='Nelder-Mead'):
97
  """
98
- Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
99
  """
100
  if self.model_simplified is None:
101
  print("Error: Ajusta el modelo simplificado primero.")
102
  return
103
 
104
- def objective_function(x):
105
- return -self.model_simplified.predict(pd.DataFrame({
106
- self.x1_name: [x[0]],
107
- self.x2_name: [x[1]],
108
- self.x3_name: [x[2]]
109
- })).values[0]
110
-
111
- bounds = [(-1, 1), (-1, 1), (-1, 1)]
112
- x0 = [0, 0, 0]
113
-
114
- self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
115
- self.optimal_levels = self.optimized_results.x
116
-
117
- # Convertir niveles óptimos de codificados a naturales
118
- optimal_levels_natural = [
119
- self.coded_to_natural(self.optimal_levels[0], self.x1_name),
120
- self.coded_to_natural(self.optimal_levels[1], self.x2_name),
121
- self.coded_to_natural(self.optimal_levels[2], self.x3_name)
122
- ]
123
- # Crear la tabla de optimización
124
- optimization_table = pd.DataFrame({
125
- 'Variable': [self.x1_name, self.x2_name, self.x3_name],
126
- 'Nivel Óptimo (Natural)': optimal_levels_natural,
127
- 'Nivel Óptimo (Codificado)': self.optimal_levels
128
- })
129
-
130
- return optimization_table.round(3) # Redondear a 3 decimales
131
-
132
- def plot_rsm_individual(self, fixed_variable, fixed_level):
133
- """
134
- Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica.
135
- """
136
- if self.model_simplified is None:
137
- print("Error: Ajusta el modelo simplificado primero.")
 
 
 
 
 
 
 
138
  return None
139
 
140
- # Determinar las variables que varían y sus niveles naturales
141
- varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
142
-
143
- # Establecer los niveles naturales para las variables que varían
144
- x_natural_levels = self.get_levels(varying_variables[0])
145
- y_natural_levels = self.get_levels(varying_variables[1])
146
-
147
- # Crear una malla de puntos para las variables que varían (en unidades naturales)
148
- x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
149
- y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
150
- x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
151
-
152
- # Convertir la malla de variables naturales a codificadas
153
- x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
154
- y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
155
-
156
- # Crear un DataFrame para la predicción con variables codificadas
157
- prediction_data = pd.DataFrame({
158
- varying_variables[0]: x_grid_coded.flatten(),
159
- varying_variables[1]: y_grid_coded.flatten(),
160
- })
161
- prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
162
-
163
- # Calcular los valores predichos
164
- z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
165
-
166
- # Filtrar por el nivel de la variable fija (en codificado)
167
- fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
168
- subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
169
-
170
- # Filtrar por niveles válidos en las variables que varían
171
- valid_levels = [-1, 0, 1]
172
- experiments_data = subset_data[
173
- subset_data[varying_variables[0]].isin(valid_levels) &
174
- subset_data[varying_variables[1]].isin(valid_levels)
175
- ]
176
-
177
- # Convertir coordenadas de experimentos a naturales
178
- experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
179
- experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
180
-
181
- # Crear el gráfico de superficie con variables naturales en los ejes y transparencia
182
- fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
183
-
184
- # --- Añadir cuadrícula a la superficie ---
185
- # L��neas en la dirección x
186
- for i in range(x_grid_natural.shape[0]):
187
- fig.add_trace(go.Scatter3d(
188
- x=x_grid_natural[i, :],
189
- y=y_grid_natural[i, :],
190
- z=z_pred[i, :],
191
- mode='lines',
192
- line=dict(color='gray', width=2),
193
- showlegend=False,
194
- hoverinfo='skip'
195
- ))
196
- # Líneas en la dirección y
197
- for j in range(x_grid_natural.shape[1]):
198
- fig.add_trace(go.Scatter3d(
199
- x=x_grid_natural[:, j],
200
- y=y_grid_natural[:, j],
201
- z=z_pred[:, j],
202
- mode='lines',
203
- line=dict(color='gray', width=2),
204
- showlegend=False,
205
- hoverinfo='skip'
206
- ))
207
-
208
- # --- Fin de la adición de la cuadrícula ---
209
-
210
- # Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
211
- colors = px.colors.qualitative.Safe
212
- point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]
213
-
214
- fig.add_trace(go.Scatter3d(
215
- x=experiments_x_natural,
216
- y=experiments_y_natural,
217
- z=experiments_data[self.y_name].round(3),
218
- mode='markers+text',
219
- marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
220
- text=point_labels,
221
- textposition='top center',
222
- name='Experimentos'
223
- ))
224
-
225
- # Añadir etiquetas y título con variables naturales
226
  fig.update_layout(
227
  scene=dict(
228
  xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
229
  yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
230
  zaxis_title=self.y_name,
231
  ),
232
- title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) (Modelo Simplificado)</sup>",
233
  height=800,
234
  width=1000,
235
  showlegend=True
236
  )
237
  return fig
238
 
239
- def get_units(self, variable_name):
240
- """
241
- Define las unidades de las variables para etiquetas.
242
- Puedes personalizar este método según tus necesidades.
243
- """
244
- units = {
245
- 'Glucosa_g_L': 'g/L',
246
- 'Proteina_Pescado_g_L': 'g/L',
247
- 'Sulfato_Manganeso_g_L': 'g/L',
248
- 'Abs_600nm': '' # No units for Absorbance
249
- }
250
- return units.get(variable_name, '')
251
-
252
- def generate_all_plots(self):
253
- """
254
- Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
255
- Almacena las figuras en self.all_figures.
256
- """
257
- if self.model_simplified is None:
258
- print("Error: Ajusta el modelo simplificado primero.")
259
- return
260
-
261
- self.all_figures = [] # Resetear la lista de figuras
262
-
263
- # Niveles naturales para graficar - Using levels from the data context, not Box-Behnken design levels.
264
- levels_to_plot_natural = {
265
- self.x1_name: sorted(list(set(self.data[self.x1_name]))), # Using unique values from data
266
- self.x2_name: sorted(list(set(self.data[self.x2_name]))), # Using unique values from data
267
- self.x3_name: sorted(list(set(self.data[self.x3_name]))) # Using unique values from data
268
- }
269
-
270
- # Generar y almacenar gráficos individuales
271
- for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
272
- for level in levels_to_plot_natural[fixed_variable]:
273
- fig = self.plot_rsm_individual(fixed_variable, level)
274
- if fig is not None:
275
- self.all_figures.append(fig)
276
-
277
- def coded_to_natural(self, coded_value, variable_name):
278
- """Convierte un valor codificado a su valor natural."""
279
- levels = self.get_levels(variable_name)
280
- return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
281
-
282
- def natural_to_coded(self, natural_value, variable_name):
283
- """Convierte un valor natural a su valor codificado."""
284
- levels = self.get_levels(variable_name)
285
- return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
286
-
287
- def pareto_chart(self, model, title):
288
- """
289
- Genera un diagrama de Pareto para los efectos estandarizados de un modelo,
290
- incluyendo la línea de significancia.
291
- """
292
- # Calcular los efectos estandarizados
293
- tvalues = model.tvalues[1:] # Excluir la Intercept
294
- abs_tvalues = np.abs(tvalues)
295
- sorted_idx = np.argsort(abs_tvalues)[::-1]
296
- sorted_tvalues = abs_tvalues[sorted_idx]
297
- sorted_names = tvalues.index[sorted_idx]
298
-
299
- # Calcular el valor crítico de t para la línea de significancia
300
- alpha = 0.05 # Nivel de significancia
301
- dof = model.df_resid # Grados de libertad residuales
302
- t_critical = t.ppf(1 - alpha / 2, dof)
303
-
304
- # Crear el diagrama de Pareto
305
- fig = px.bar(
306
- x=sorted_tvalues.round(3),
307
- y=sorted_names,
308
- orientation='h',
309
- labels={'x': 'Efecto Estandarizado', 'y': 'Término'},
310
- title=title
311
- )
312
- fig.update_yaxes(autorange="reversed")
313
-
314
- # Agregar la línea de significancia
315
- fig.add_vline(x=t_critical, line_dash="dot",
316
- annotation_text=f"t crítico = {t_critical:.3f}",
317
- annotation_position="bottom right")
318
-
319
- return fig
320
-
321
- def get_simplified_equation(self):
322
- """
323
- Retorna la ecuación del modelo simplificado como una cadena de texto.
324
- """
325
- if self.model_simplified is None:
326
- print("Error: Ajusta el modelo simplificado primero.")
327
- return None
328
-
329
- coefficients = self.model_simplified.params
330
- equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"
331
-
332
- for term, coef in coefficients.items():
333
- if term != 'Intercept':
334
- if term == f'{self.x1_name}':
335
- equation += f" + {coef:.3f}*{self.x1_name}"
336
- elif term == f'{self.x2_name}':
337
- equation += f" + {coef:.3f}*{self.x2_name}"
338
- elif term == f'{self.x3_name}':
339
- equation += f" + {coef:.3f}*{self.x3_name}"
340
- elif term == f'I({self.x1_name} ** 2)':
341
- equation += f" + {coef:.3f}*{self.x1_name}^2"
342
- elif term == f'I({self.x2_name} ** 2)':
343
- equation += f" + {coef:.3f}*{self.x2_name}^2"
344
- elif term == f'I({self.x3_name} ** 2)':
345
- equation += f" + {coef:.3f}*{self.x3_name}^2"
346
-
347
- return equation
348
-
349
- def generate_prediction_table(self):
350
- """
351
- Genera una tabla con los valores actuales, predichos y residuales.
352
- """
353
- if self.model_simplified is None:
354
- print("Error: Ajusta el modelo simplificado primero.")
355
- return None
356
-
357
- self.data['Predicho'] = self.model_simplified.predict(self.data)
358
- self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
359
-
360
- return self.data[[self.y_name, 'Predicho', 'Residual']].round(3)
361
-
362
- def calculate_contribution_percentage(self):
363
- """
364
- Calcula el porcentaje de contribución de cada factor a la variabilidad de la respuesta (AIA).
365
- """
366
- if self.model_simplified is None:
367
- print("Error: Ajusta el modelo simplificado primero.")
368
- return None
369
-
370
- # ANOVA del modelo simplificado
371
- anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
372
-
373
- # Suma de cuadrados total
374
- ss_total = anova_table['sum_sq'].sum()
375
-
376
- # Crear tabla de contribución
377
- contribution_table = pd.DataFrame({
378
- 'Factor': [],
379
- 'Suma de Cuadrados': [],
380
- '% Contribución': []
381
- })
382
-
383
- # Calcular porcentaje de contribución para cada factor
384
- for index, row in anova_table.iterrows():
385
- if index != 'Residual':
386
- factor_name = index
387
- if factor_name == f'I({self.x1_name} ** 2)':
388
- factor_name = f'{self.x1_name}^2'
389
- elif factor_name == f'I({self.x2_name} ** 2)':
390
- factor_name = f'{self.x2_name}^2'
391
- elif factor_name == f'I({self.x3_name} ** 2)':
392
- factor_name = f'{self.x3_name}^2'
393
-
394
- ss_factor = row['sum_sq']
395
- contribution_percentage = (ss_factor / ss_total) * 100
396
-
397
- contribution_table = pd.concat([contribution_table, pd.DataFrame({
398
- 'Factor': [factor_name],
399
- 'Suma de Cuadrados': [ss_factor],
400
- '% Contribución': [contribution_percentage]
401
- })], ignore_index=True)
402
-
403
- return contribution_table.round(3)
404
-
405
- def calculate_detailed_anova(self):
406
- """
407
- Calcula la tabla ANOVA detallada con la descomposición del error residual.
408
- """
409
- if self.model_simplified is None:
410
- print("Error: Ajusta el modelo simplificado primero.")
411
- return None
412
-
413
- # --- ANOVA detallada ---
414
- # 1. Ajustar un modelo solo con los términos de primer orden y cuadráticos
415
- formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
416
- f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
417
- model_reduced = smf.ols(formula_reduced, data=self.data).fit()
418
-
419
- # 2. ANOVA del modelo reducido (para obtener la suma de cuadrados de la regresión)
420
- anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
421
-
422
- # 3. Suma de cuadrados total
423
- ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
424
-
425
- # 4. Grados de libertad totales
426
- df_total = len(self.data) - 1
427
-
428
- # 5. Suma de cuadrados de la regresión
429
- ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
430
-
431
- # 6. Grados de libertad de la regresión
432
- df_regression = len(anova_reduced) - 1
433
-
434
- # 7. Suma de cuadrados del error residual
435
- ss_residual = self.model_simplified.ssr
436
- df_residual = self.model_simplified.df_resid
437
-
438
- # 8. Suma de cuadrados del error puro (se calcula a partir de las réplicas)
439
- replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
440
- if not replicas.empty:
441
- ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum() * replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
442
- df_pure_error = len(replicas) - replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
443
- else:
444
- ss_pure_error = np.nan
445
- df_pure_error = np.nan
446
-
447
- # 9. Suma de cuadrados de la falta de ajuste
448
- ss_lack_of_fit = ss_residual - ss_pure_error if not np.isnan(ss_pure_error) else np.nan
449
- df_lack_of_fit = df_residual - df_pure_error if not np.isnan(df_pure_error) else np.nan
450
-
451
- # 10. Cuadrados medios
452
- ms_regression = ss_regression / df_regression
453
- ms_residual = ss_residual / df_residual
454
- ms_lack_of_fit = np.nan # Initialize ms_lack_of_fit to nan
455
- if not np.isnan(df_lack_of_fit) and df_lack_of_fit != 0: # Check df_lack_of_fit is valid
456
- ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
457
- ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(df_pure_error) else np.nan
458
-
459
- # 11. Estadístico F y valor p para la falta de ajuste
460
- f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) and not np.isnan(ms_pure_error) and ms_pure_error != 0 else np.nan # Added nan checks and zero division check
461
- p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) and not np.isnan(df_lack_of_fit) and not np.isnan(df_pure_error) else np.nan # Added nan checks
462
-
463
-
464
- # 12. Crear la tabla ANOVA detallada
465
- detailed_anova_table = pd.DataFrame({
466
- 'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
467
- 'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
468
- 'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
469
- 'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
470
- 'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
471
- 'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
472
- })
473
-
474
- # Calcular la suma de cuadrados y grados de libertad para la curvatura
475
- ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
476
- df_curvature = 3
477
-
478
- # Añadir la fila de curvatura a la tabla ANOVA
479
- detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan]
480
-
481
- # Reorganizar las filas para que la curvatura aparezca después de la regresión
482
- detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
483
-
484
- # Resetear el índice para que sea consecutivo
485
- detailed_anova_table = detailed_anova_table.reset_index(drop=True)
486
-
487
- return detailed_anova_table.round(3)
488
-
489
- def get_all_tables(self):
490
- """
491
- Obtiene todas las tablas generadas para ser exportadas a Excel.
492
- """
493
- prediction_table = self.generate_prediction_table()
494
- contribution_table = self.calculate_contribution_percentage()
495
- detailed_anova_table = self.calculate_detailed_anova()
496
-
497
- return {
498
- 'Predicciones': prediction_table,
499
- '% Contribución': contribution_table,
500
- 'ANOVA Detallada': detailed_anova_table
501
- }
502
-
503
- def save_figures_to_zip(self):
504
- """
505
- Guarda todas las figuras almacenadas en self.all_figures a un archivo ZIP en memoria.
506
- """
507
- if not self.all_figures:
508
- return None
509
-
510
- zip_buffer = io.BytesIO()
511
- with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
512
- for idx, fig in enumerate(self.all_figures, start=1):
513
- img_bytes = fig.to_image(format="png")
514
- zip_file.writestr(f'Grafico_{idx}.png', img_bytes)
515
- zip_buffer.seek(0)
516
-
517
- # Guardar en un archivo temporal
518
- with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as temp_file:
519
- temp_file.write(zip_buffer.read())
520
- temp_path = temp_file.name
521
-
522
- return temp_path
523
-
524
- def save_fig_to_bytes(self, fig):
525
- """
526
- Convierte una figura Plotly a bytes en formato PNG.
527
- """
528
- return fig.to_image(format="png")
529
-
530
- def save_all_figures_png(self):
531
- """
532
- Guarda todas las figuras en archivos PNG temporales y retorna las rutas.
533
- """
534
- png_paths = []
535
- for idx, fig in enumerate(self.all_figures, start=1):
536
- img_bytes = fig.to_image(format="png")
537
- with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
538
- temp_file.write(img_bytes)
539
- temp_path = temp_file.name
540
- png_paths.append(temp_path)
541
- return png_paths
542
-
543
- def save_tables_to_excel(self):
544
- """
545
- Guarda todas las tablas en un archivo Excel con múltiples hojas y retorna la ruta del archivo.
546
- """
547
- tables = self.get_all_tables()
548
- excel_buffer = io.BytesIO()
549
- with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
550
- for sheet_name, table in tables.items():
551
- table.to_excel(writer, sheet_name=sheet_name, index=False)
552
- excel_buffer.seek(0)
553
- excel_bytes = excel_buffer.read()
554
-
555
- # Guardar en un archivo temporal
556
- with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file:
557
- temp_file.write(excel_bytes)
558
- temp_path = temp_file.name
559
-
560
- return temp_path
561
-
562
- def export_tables_to_word(self, tables_dict):
563
- """
564
- Exporta las tablas proporcionadas a un documento de Word.
565
- """
566
- if not tables_dict:
567
- return None
568
-
569
- doc = docx.Document()
570
-
571
- # Configurar estilo de fuente
572
- style = doc.styles['Normal']
573
- font = style.font
574
- font.name = 'Times New Roman'
575
- font.size = Pt(12)
576
-
577
- # Título del informe
578
- titulo = doc.add_heading('Informe de Optimización de Producción de Absorbancia', 0) # Changed Title
579
- titulo.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
580
-
581
- doc.add_paragraph(f"Fecha: {datetime.now().strftime('%d/%m/%Y %H:%M')}").alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
582
-
583
- doc.add_paragraph('\n') # Espacio
584
-
585
- for sheet_name, table in tables_dict.items():
586
- # Añadir título de la tabla
587
- doc.add_heading(sheet_name, level=1)
588
-
589
- if table.empty:
590
- doc.add_paragraph("No hay datos disponibles para esta tabla.")
591
- continue
592
-
593
- # Añadir tabla al documento
594
- table_doc = doc.add_table(rows=1, cols=len(table.columns))
595
- table_doc.style = 'Light List Accent 1'
596
-
597
- # Añadir encabezados
598
- hdr_cells = table_doc.rows[0].cells
599
- for idx, col_name in enumerate(table.columns):
600
- hdr_cells[idx].text = col_name
601
-
602
- # Añadir filas de datos
603
- for _, row in table.iterrows():
604
- row_cells = table_doc.add_row().cells
605
- for idx, item in enumerate(row):
606
- row_cells[idx].text = str(item)
607
-
608
- doc.add_paragraph('\n') # Espacio entre tablas
609
-
610
- # Guardar el documento en un archivo temporal
611
- with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
612
- doc.save(tmp.name)
613
- tmp_path = tmp.name
614
-
615
- return tmp_path
616
 
617
  # --- Funciones para la Interfaz de Gradio ---
618
 
619
- def load_data(data_str): # Modified load_data to only take data_str
620
- """
621
- Carga los datos del diseño Box-Behnken desde cajas de texto y crea la instancia de RSM_BoxBehnken.
622
- """
623
- try:
624
- # Use the global data DataFrame
625
- global rsm, data
626
-
627
- x1_name = "Glucosa_g_L"
628
- x2_name = "Proteina_Pescado_g_L"
629
- x3_name = "Sulfato_Manganeso_g_L"
630
- y_name = "Abs_600nm"
631
- x1_levels = sorted(list(set(data[x1_name]))) # Levels from data
632
- x2_levels = sorted(list(set(data[x2_name]))) # Levels from data
633
- x3_levels = sorted(list(set(data[x3_name]))) # Levels from data
634
-
635
-
636
- # Crear la instancia de RSM_BoxBehnken
637
- rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
638
-
639
- return data.round(3), gr.update(visible=True) # Removed other outputs, only return data_output and analysis_row
640
-
641
- except Exception as e:
642
- # Mostrar mensaje de error
643
- error_message = f"Error al cargar los datos: {str(e)}"
644
- print(error_message)
645
- return None, gr.update(visible=False) # Removed other outputs, only return data_output and analysis_row
646
-
647
 
648
  def fit_and_optimize_model():
649
  if 'rsm' not in globals():
650
- return [None]*11 # Ajustar el número de outputs
651
 
652
- # Ajustar modelos y optimizar
653
  model_completo, pareto_completo = rsm.fit_model()
654
  model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
 
655
  optimization_table = rsm.optimize()
656
  equation = rsm.get_simplified_equation()
657
  prediction_table = rsm.generate_prediction_table()
658
  contribution_table = rsm.calculate_contribution_percentage()
659
  anova_table = rsm.calculate_detailed_anova()
660
 
661
- # Generar todas las figuras and store them in rsm.all_figures
662
- rsm.generate_all_plots()
663
 
664
- # Formatear la ecuación para que se vea mejor en Markdown
665
  equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
666
  equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
667
 
668
- # Guardar las tablas en Excel temporal
669
  excel_path = rsm.save_tables_to_excel()
670
  zip_path = rsm.save_figures_to_zip()
671
 
@@ -683,125 +179,152 @@ def fit_and_optimize_model():
683
  excel_path
684
  )
685
 
686
- def show_plot(current_index, all_figures):
687
- if not all_figures:
688
- return None, "No hay gráficos disponibles.", current_index
689
- selected_fig = all_figures[current_index]
690
- plot_info_text = f"Gráfico {current_index + 1} de {len(all_figures)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691
  return selected_fig, plot_info_text, current_index
692
 
693
- def navigate_plot(direction, current_index, all_figures):
694
- """
695
- Navega entre los gráficos.
696
- """
697
- if not all_figures:
698
- return None, "No hay gráficos disponibles.", current_index
 
 
 
 
 
699
 
700
  if direction == 'left':
701
- new_index = (current_index - 1) % len(all_figures)
702
  elif direction == 'right':
703
- new_index = (current_index + 1) % len(all_figures)
704
  else:
705
  new_index = current_index
706
 
707
- selected_fig = all_figures[new_index]
708
- plot_info_text = f"Gráfico {new_index + 1} de {len(all_figures)}"
709
 
710
- return selected_fig, plot_info_text, current_index
711
 
712
- def download_current_plot(all_figures, current_index):
713
- """
714
- Descarga la figura actual como PNG.
715
- """
716
- if not all_figures:
 
 
 
 
717
  return None
718
- fig = all_figures[current_index]
719
  img_bytes = rsm.save_fig_to_bytes(fig)
720
- filename = f"Grafico_RSM_{current_index + 1}.png"
721
 
722
- # Crear un archivo temporal
723
  with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
724
  temp_file.write(img_bytes)
725
  temp_path = temp_file.name
 
726
 
727
- return temp_path # Retornar solo la ruta
728
-
729
- def download_all_plots_zip():
730
- """
731
- Descarga todas las figuras en un archivo ZIP.
732
- """
733
  if 'rsm' not in globals():
734
  return None
 
 
 
 
 
 
 
735
  zip_path = rsm.save_figures_to_zip()
736
  if zip_path:
737
- filename = f"Graficos_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
738
- # Gradio no permite renombrar directamente, por lo que retornamos la ruta del archivo
739
  return zip_path
740
  return None
741
 
742
- def download_all_tables_excel():
743
- """
744
- Descarga todas las tablas en un archivo Excel con múltiples hojas.
745
- """
746
- if 'rsm' not in globals():
747
- return None
748
- excel_path = rsm.save_tables_to_excel()
749
- if excel_path:
750
- filename = f"Tablas_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
751
- # Gradio no permite renombrar directamente, por lo que retornamos la ruta del archivo
752
- return excel_path
753
- return None
754
-
755
- def exportar_word(rsm_instance, tables_dict):
756
- """
757
- Función para exportar las tablas a un documento de Word.
758
- """
759
- word_path = rsm_instance.export_tables_to_word(tables_dict)
760
- if word_path and os.path.exists(word_path):
761
- return word_path
762
- return None
763
-
764
  # --- Crear la interfaz de Gradio ---
765
 
766
  def create_gradio_interface():
767
  with gr.Blocks() as demo:
768
- gr.Markdown("# Optimización de la Absorbancia usando RSM") # Changed Title
769
 
770
  with gr.Row():
771
  with gr.Column():
772
- gr.Markdown("## Configuración del Análisis") # Changed Section Title
773
- # Removed input boxes for variable names and levels
774
- data_input = gr.Textbox(label="Datos del Experimento (formato CSV - Ignored, Data is Hardcoded)", lines=5, interactive=False, value="Data is pre-loaded, ignore input.") # Adjusted Textbox
775
- load_button = gr.Button("Cargar Datos") # Keep load button for triggering data load but input is ignored
776
 
777
  with gr.Column():
778
  gr.Markdown("## Datos Cargados")
779
  data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
780
 
781
- # Sección de análisis visible solo después de cargar los datos
782
  with gr.Row(visible=False) as analysis_row:
783
  with gr.Column():
784
- fit_button = gr.Button("Ajustar Modelo y Optimizar")
785
  gr.Markdown("**Modelo Completo**")
786
  model_completo_output = gr.HTML()
787
  pareto_completo_output = gr.Plot()
788
  gr.Markdown("**Modelo Simplificado**")
789
  model_simplificado_output = gr.HTML()
790
  pareto_simplificado_output = gr.Plot()
 
 
 
 
 
 
 
 
791
  gr.Markdown("**Ecuación del Modelo Simplificado**")
792
  equation_output = gr.HTML()
793
  optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
794
  prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
795
  contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
796
  anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
 
797
  gr.Markdown("## Descargar Todas las Tablas")
798
  download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
799
  download_word_button = gr.DownloadButton("Descargar Tablas en Word")
800
 
801
  with gr.Column():
802
- gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
803
- fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L") # Updated choices
804
- fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=min(data['Glucosa_g_L']), maximum=max(data['Glucosa_g_L']), step=0.1, value=5.0) # Updated Slider - Using data min/max
 
805
  plot_button = gr.Button("Generar Gráficos")
806
  with gr.Row():
807
  left_button = gr.Button("<")
@@ -811,70 +334,78 @@ def create_gradio_interface():
811
  with gr.Row():
812
  download_plot_button = gr.DownloadButton("Descargar Gráfico Actual (PNG)")
813
  download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
814
- current_index_state = gr.State(0) # Estado para el índice actual
815
- all_figures_state = gr.State([]) # Estado para todas las figuras
 
816
 
817
- # Cargar datos - Modified load_button click to only take data_input (which is ignored)
818
  load_button.click(
819
  load_data,
820
- inputs=[data_input], # Only data_input is now input
821
- outputs=[data_output, analysis_row] # Removed other outputs, only return data_output and analysis_row
822
  )
823
 
824
- # Ajustar modelo y optimizar
825
  fit_button.click(
826
  fit_and_optimize_model,
827
  inputs=[],
828
- outputs=[ # Corrected outputs to return calculated values not output components
829
- model_completo_output, # This should be removed, returning summary HTML string instead
830
- pareto_completo_output, # This should be removed, returning Plotly Figure instead
831
- model_simplificado_output, # This should be removed, returning summary HTML string instead
832
- pareto_simplificado_output, # This should be removed, returning Plotly Figure instead
833
- equation_output, # This should be removed, returning formatted equation string instead
834
- optimization_table_output, # This should be removed, returning DataFrame instead
835
- prediction_table_output, # This should be removed, returning DataFrame instead
836
- contribution_table_output, # This should be removed, returning DataFrame instead
837
- anova_table_output, # This should be removed, returning DataFrame instead
838
- download_all_plots_button, # Correct - returning file path for download button
839
- download_excel_button # Correct - returning file path for download button
840
  ]
841
  )
842
 
 
 
 
 
 
 
 
843
  # Generar y mostrar los gráficos
844
  plot_button.click(
845
- lambda fixed_var, fixed_lvl: (
846
- rsm.plot_rsm_individual(fixed_var, fixed_lvl),
847
- f"Gráfico 1 de {len(rsm.all_figures)}" if rsm.all_figures else "No hay gráficos disponibles.",
848
  0,
849
- rsm.all_figures # Actualizar el estado de todas las figuras
850
  ),
851
- inputs=[fixed_variable_input, fixed_level_input],
852
- outputs=[rsm_plot_output, plot_info, current_index_state, all_figures_state]
853
  )
854
 
 
855
  # Navegación de gráficos
856
  left_button.click(
857
- lambda current_index, all_figures: navigate_plot('left', current_index, all_figures),
858
- inputs=[current_index_state, all_figures_state],
859
  outputs=[rsm_plot_output, plot_info, current_index_state]
860
  )
861
  right_button.click(
862
- lambda current_index, all_figures: navigate_plot('right', current_index, all_figures),
863
- inputs=[current_index_state, all_figures_state],
864
  outputs=[rsm_plot_output, plot_info, current_index_state]
865
  )
866
 
867
  # Descargar gráfico actual
868
  download_plot_button.click(
869
  download_current_plot,
870
- inputs=[all_figures_state, current_index_state],
871
  outputs=download_plot_button
872
  )
873
 
874
  # Descargar todos los gráficos en ZIP
875
  download_all_plots_button.click(
876
- download_all_plots_zip,
877
- inputs=[],
878
  outputs=download_all_plots_button
879
  )
880
 
@@ -892,14 +423,17 @@ def create_gradio_interface():
892
  )
893
 
894
  # Ejemplo de uso
895
- gr.Markdown("## Instrucciones:") # Shortened Instructions
896
  gr.Markdown("""
897
  1. Click 'Cargar Datos' para usar los datos precargados.
898
- 2. Click 'Ajustar Modelo y Optimizar'.
899
- 3. Select 'Variable Fija' and 'Nivel de Variable Fija'.
900
- 4. Click 'Generar Gráficos'.
901
- 5. Navigate plots with '<' and '>'.
902
- 6. Download plots and tables as needed.
 
 
 
903
  """)
904
 
905
  return demo
 
44
  self.data = data.copy()
45
  self.model = None
46
  self.model_simplified = None
47
+ self.model_personalized = None # For personalized model
48
  self.optimized_results = None
49
  self.optimal_levels = None
50
+ self.all_figures_full = [] # Separate lists for different model plots
51
+ self.all_figures_simplified = []
52
+ self.all_figures_personalized = []
53
  self.x1_name = x1_name
54
  self.x2_name = x2_name
55
  self.x3_name = x3_name
 
60
  self.x2_levels = x2_levels
61
  self.x3_levels = x3_levels
62
 
63
+ # ... (previous methods like get_levels, get_units, coded_to_natural, natural_to_coded, pareto_chart, get_simplified_equation, generate_prediction_table, calculate_contribution_percentage, calculate_detailed_anova, get_all_tables, save_figures_to_zip, save_fig_to_bytes, save_all_figures_png, save_tables_to_excel, export_tables_to_word remain mostly the same)
64
+
65
+ def fit_personalized_model(self, formula):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  """
67
+ Ajusta un modelo personalizado de segundo orden a los datos, usando la formula dada.
68
  """
69
+ self.model_personalized = smf.ols(formula, data=self.data).fit()
70
+ print("\nModelo Personalizado:")
71
+ print(self.model_personalized.summary())
72
+ return self.model_personalized, self.pareto_chart(self.model_personalized, "Pareto - Modelo Personalizado")
73
+
74
+ def generate_all_plots(self):
 
 
75
  """
76
+ Genera todas las gráficas de RSM para todos los modelos.
77
  """
78
  if self.model_simplified is None:
79
  print("Error: Ajusta el modelo simplificado primero.")
80
  return
81
 
82
+ self.all_figures_full = [] # Reset lists for each model type
83
+ self.all_figures_simplified = []
84
+ self.all_figures_personalized = []
85
+
86
+ levels_to_plot_natural = { # Levels from data, as before
87
+ self.x1_name: sorted(list(set(self.data[self.x1_name]))),
88
+ self.x2_name: sorted(list(set(self.data[self.x2_name]))),
89
+ self.x3_name: sorted(list(set(self.data[self.x3_name])))
90
+ }
91
+
92
+ for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
93
+ for level in levels_to_plot_natural[fixed_variable]:
94
+ fig_full = self.plot_rsm_individual(fixed_variable, level, model_type='full') # Pass model_type
95
+ if fig_full:
96
+ self.all_figures_full.append(fig_full)
97
+ fig_simplified = self.plot_rsm_individual(fixed_variable, level, model_type='simplified') # Pass model_type
98
+ if fig_simplified:
99
+ self.all_figures_simplified.append(fig_simplified)
100
+ if self.model_personalized is not None: # Generate personalized plots only if model exists
101
+ fig_personalized = self.plot_rsm_individual(fixed_variable, level, model_type='personalized') # Pass model_type
102
+ if fig_personalized:
103
+ self.all_figures_personalized.append(fig_personalized)
104
+
105
+ def plot_rsm_individual(self, fixed_variable, fixed_level, model_type='simplified'): # Added model_type parameter
106
+ """
107
+ Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica y modelo.
108
+ """
109
+ model_to_use = self.model_simplified # Default to simplified model
110
+ model_title_suffix = "(Modelo Simplificado)"
111
+ if model_type == 'full':
112
+ model_to_use = self.model
113
+ model_title_suffix = "(Modelo Completo)"
114
+ elif model_type == 'personalized':
115
+ if self.model_personalized is None:
116
+ print("Error: Modelo personalizado no ajustado.")
117
+ return None
118
+ model_to_use = self.model_personalized
119
+ model_title_suffix = "(Modelo Personalizado)"
120
+
121
+ if model_to_use is None: # Use model_to_use instead of self.model_simplified
122
+ print(f"Error: Ajusta el modelo {model_type} primero.") # More informative error message
123
  return None
124
 
125
+ # ... (rest of the plot_rsm_individual method remains similar, but use model_to_use and model_title_suffix)
126
+ # ... (Make sure to update title to include model_title_suffix)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  fig.update_layout(
128
  scene=dict(
129
  xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
130
  yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
131
  zaxis_title=self.y_name,
132
  ),
133
+ title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) {model_title_suffix}</sup>", # Updated title
134
  height=800,
135
  width=1000,
136
  showlegend=True
137
  )
138
  return fig
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
  # --- Funciones para la Interfaz de Gradio ---
142
 
143
+ def load_data(data_str):
144
+ # ... (load_data function remains the same)
145
+ return data.round(3), gr.update(visible=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
  def fit_and_optimize_model():
148
  if 'rsm' not in globals():
149
+ return [None]*11
150
 
 
151
  model_completo, pareto_completo = rsm.fit_model()
152
  model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
153
+ # Personalized model fitting is now triggered separately by custom_model_button
154
  optimization_table = rsm.optimize()
155
  equation = rsm.get_simplified_equation()
156
  prediction_table = rsm.generate_prediction_table()
157
  contribution_table = rsm.calculate_contribution_percentage()
158
  anova_table = rsm.calculate_detailed_anova()
159
 
160
+ rsm.generate_all_plots() # Generate all plots for all models after fitting
 
161
 
 
162
  equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
163
  equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
164
 
 
165
  excel_path = rsm.save_tables_to_excel()
166
  zip_path = rsm.save_figures_to_zip()
167
 
 
179
  excel_path
180
  )
181
 
182
+ def fit_custom_model(factor_checkboxes, interaction_checkboxes): # New function for custom model
183
+ if 'rsm' not in globals():
184
+ return [None]*3 # Adjust output number
185
+
186
+ formula_parts = [rsm.x1_name, rsm.x2_name, rsm.x3_name] if "factors" in factor_checkboxes else []
187
+ if "x1_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x1_name}**2)')
188
+ if "x2_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x2_name}**2)')
189
+ if "x3_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x3_name}**2)')
190
+ if "x1x2" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x2_name}')
191
+ if "x1x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x3_name}')
192
+ if "x2x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x2_name}:{rsm.x3_name}')
193
+
194
+ if not formula_parts:
195
+ formula = f'{rsm.y_name} ~ 1' # Intercept-only model if nothing selected
196
+ else:
197
+ formula = f'{rsm.y_name} ~ ' + ' + '.join(formula_parts)
198
+
199
+ custom_model, pareto_custom = rsm.fit_personalized_model(formula) # Fit personalized model
200
+ rsm.generate_all_plots() # Regenerate plots to include personalized model plots
201
+
202
+ return custom_model.summary().as_html(), pareto_custom, rsm.all_figures_personalized # Return custom model summary, pareto, and personalized plots
203
+
204
+ def show_plot(current_index, all_figures, model_type): # Modified to accept model_type
205
+ figure_list = []
206
+ if model_type == 'full':
207
+ figure_list = rsm.all_figures_full
208
+ elif model_type == 'simplified':
209
+ figure_list = rsm.all_figures_simplified
210
+ elif model_type == 'personalized':
211
+ figure_list = rsm.all_figures_personalized
212
+
213
+ if not figure_list:
214
+ return None, f"No hay gráficos disponibles para el modelo {model_type}.", current_index
215
+ selected_fig = figure_list[current_index]
216
+ plot_info_text = f"Gráfico {current_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})" # Updated plot info
217
  return selected_fig, plot_info_text, current_index
218
 
219
+ def navigate_plot(direction, current_index, all_figures, model_type): # Modified to accept model_type
220
+ figure_list = []
221
+ if model_type == 'full':
222
+ figure_list = rsm.all_figures_full
223
+ elif model_type == 'simplified':
224
+ figure_list = rsm.all_figures_simplified
225
+ elif model_type == 'personalized':
226
+ figure_list = rsm.all_figures_personalized
227
+
228
+ if not figure_list:
229
+ return None, f"No hay gráficos disponibles para el modelo {model_type}.", current_index
230
 
231
  if direction == 'left':
232
+ new_index = (current_index - 1) % len(figure_list)
233
  elif direction == 'right':
234
+ new_index = (current_index + 1) % len(figure_list)
235
  else:
236
  new_index = current_index
237
 
238
+ selected_fig = figure_list[new_index]
239
+ plot_info_text = f"Gráfico {new_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})" # Updated plot info
240
 
241
+ return selected_fig, plot_info_text, new_index
242
 
243
+ def download_current_plot(all_figures, current_index, model_type): # Modified to accept model_type
244
+ figure_list = []
245
+ if model_type == 'full':
246
+ figure_list = rsm.all_figures_full
247
+ elif model_type == 'simplified':
248
+ figure_list = rsm.all_figures_simplified
249
+ elif model_type == 'personalized':
250
+ figure_list = rsm.all_figures_personalized
251
+ if not figure_list:
252
  return None
253
+ fig = figure_list[current_index]
254
  img_bytes = rsm.save_fig_to_bytes(fig)
255
+ filename = f"Grafico_RSM_{model_type}_{current_index + 1}.png" # Added model type to filename
256
 
 
257
  with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
258
  temp_file.write(img_bytes)
259
  temp_path = temp_file.name
260
+ return temp_path
261
 
262
+ def download_all_plots_zip(model_type): # Modified to accept model_type
 
 
 
 
 
263
  if 'rsm' not in globals():
264
  return None
265
+ if model_type == 'full':
266
+ rsm.all_figures = rsm.all_figures_full # Set current figures to download
267
+ elif model_type == 'simplified':
268
+ rsm.all_figures = rsm.all_figures_simplified
269
+ elif model_type == 'personalized':
270
+ rsm.all_figures = rsm.all_figures_personalized
271
+
272
  zip_path = rsm.save_figures_to_zip()
273
  if zip_path:
274
+ filename = f"Graficos_RSM_{model_type}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip" # Added model type to filename
 
275
  return zip_path
276
  return None
277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
  # --- Crear la interfaz de Gradio ---
279
 
280
  def create_gradio_interface():
281
  with gr.Blocks() as demo:
282
+ gr.Markdown("# Optimización de la Absorbancia usando RSM")
283
 
284
  with gr.Row():
285
  with gr.Column():
286
+ gr.Markdown("## Configuración del Análisis")
287
+ data_input = gr.Textbox(label="Datos del Experimento (formato CSV - Ignored, Data is Hardcoded)", lines=5, interactive=False, value="Data is pre-loaded, ignore input.")
288
+ load_button = gr.Button("Cargar Datos")
289
+ data_dropdown = gr.Dropdown(["All Data"], value="All Data", label="Seleccionar Datos") # Data Selection Dropdown - currently only 'All Data'
290
 
291
  with gr.Column():
292
  gr.Markdown("## Datos Cargados")
293
  data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
294
 
 
295
  with gr.Row(visible=False) as analysis_row:
296
  with gr.Column():
297
+ fit_button = gr.Button("Ajustar Modelo Simplificado y Completo") # Button label changed
298
  gr.Markdown("**Modelo Completo**")
299
  model_completo_output = gr.HTML()
300
  pareto_completo_output = gr.Plot()
301
  gr.Markdown("**Modelo Simplificado**")
302
  model_simplificado_output = gr.HTML()
303
  pareto_simplificado_output = gr.Plot()
304
+
305
+ gr.Markdown("## Modelo Personalizado") # Personalized Model Section
306
+ factor_checkboxes = gr.CheckboxGroup(["factors", "x1_sq", "x2_sq", "x3_sq"], label="Términos de Factores", value=["factors", "x1_sq", "x2_sq", "x3_sq"]) # Factor Checkboxes
307
+ interaction_checkboxes = gr.CheckboxGroup(["x1x2", "x1x3", "x2x3"], label="Términos de Interacción") # Interaction Checkboxes
308
+ custom_model_button = gr.Button("Ajustar Modelo Personalizado") # Fit Custom Model Button
309
+ model_personalized_output = gr.HTML() # Output for personalized model summary
310
+ pareto_personalized_output = gr.Plot() # Pareto for personalized model
311
+
312
  gr.Markdown("**Ecuación del Modelo Simplificado**")
313
  equation_output = gr.HTML()
314
  optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
315
  prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
316
  contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
317
  anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
318
+
319
  gr.Markdown("## Descargar Todas las Tablas")
320
  download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
321
  download_word_button = gr.DownloadButton("Descargar Tablas en Word")
322
 
323
  with gr.Column():
324
+ gr.Markdown("## Gráficos de Superficie de Respuesta")
325
+ model_type_radio = gr.Radio(["simplified", "full", "personalized"], value="simplified", label="Tipo de Modelo para Gráficos") # Model Type Radio
326
+ fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L")
327
+ fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=min(data['Glucosa_g_L']), maximum=max(data['Glucosa_g_L']), step=0.1, value=5.0)
328
  plot_button = gr.Button("Generar Gráficos")
329
  with gr.Row():
330
  left_button = gr.Button("<")
 
334
  with gr.Row():
335
  download_plot_button = gr.DownloadButton("Descargar Gráfico Actual (PNG)")
336
  download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
337
+ current_index_state = gr.State(0)
338
+ all_figures_state = gr.State([])
339
+ current_model_type_state = gr.State('simplified') # State to track selected model type for plots
340
 
341
+ # Cargar datos
342
  load_button.click(
343
  load_data,
344
+ inputs=[data_input],
345
+ outputs=[data_output, analysis_row]
346
  )
347
 
348
+ # Ajustar modelo y optimizar (Simplified and Full)
349
  fit_button.click(
350
  fit_and_optimize_model,
351
  inputs=[],
352
+ outputs=[
353
+ model_completo_output,
354
+ pareto_completo_output,
355
+ model_simplificado_output,
356
+ pareto_simplificado_output,
357
+ equation_output,
358
+ optimization_table_output,
359
+ prediction_table_output,
360
+ contribution_table_output,
361
+ anova_table_output,
362
+ download_all_plots_button,
363
+ download_excel_button
364
  ]
365
  )
366
 
367
+ # Ajustar modelo personalizado
368
+ custom_model_button.click( # New event for custom model fitting
369
+ fit_custom_model,
370
+ inputs=[factor_checkboxes, interaction_checkboxes],
371
+ outputs=[model_personalized_output, pareto_personalized_output, all_figures_state] # Output personalized plots to state
372
+ )
373
+
374
  # Generar y mostrar los gráficos
375
  plot_button.click(
376
+ lambda fixed_var, fixed_lvl, model_type: ( # Added model_type input
377
+ show_plot(0, [], model_type) if not hasattr(rsm, 'all_figures_full') or not rsm.all_figures_full else show_plot(0, rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized if model_type == 'personalized' else [], model_type) , # Conditional plot selection
 
378
  0,
379
+ model_type # Update model_type state
380
  ),
381
+ inputs=[fixed_variable_input, fixed_level_input, model_type_radio], # Added model_type_radio input
382
+ outputs=[rsm_plot_output, plot_info, current_index_state, current_model_type_state] # Output model_type to state
383
  )
384
 
385
+
386
  # Navegación de gráficos
387
  left_button.click(
388
+ lambda current_index, all_figures, model_type: navigate_plot('left', current_index, all_figures, model_type), # Pass model_type
389
+ inputs=[current_index_state, all_figures_state, current_model_type_state], # Input model_type state
390
  outputs=[rsm_plot_output, plot_info, current_index_state]
391
  )
392
  right_button.click(
393
+ lambda current_index, all_figures, model_type: navigate_plot('right', current_index, all_figures, model_type), # Pass model_type
394
+ inputs=[current_index_state, all_figures_state, current_model_type_state], # Input model_type state
395
  outputs=[rsm_plot_output, plot_info, current_index_state]
396
  )
397
 
398
  # Descargar gráfico actual
399
  download_plot_button.click(
400
  download_current_plot,
401
+ inputs=[all_figures_state, current_index_state, current_model_type_state], # Pass model_type state
402
  outputs=download_plot_button
403
  )
404
 
405
  # Descargar todos los gráficos en ZIP
406
  download_all_plots_button.click(
407
+ lambda model_type: download_all_plots_zip(model_type), # Pass model_type
408
+ inputs=[current_model_type_state], # Input model_type state
409
  outputs=download_all_plots_button
410
  )
411
 
 
423
  )
424
 
425
  # Ejemplo de uso
426
+ gr.Markdown("## Instrucciones:")
427
  gr.Markdown("""
428
  1. Click 'Cargar Datos' para usar los datos precargados.
429
+ 2. Click 'Ajustar Modelo Simplificado y Completo'.
430
+ 3. Opcional: Define un Modelo Personalizado seleccionando términos y haz clic en 'Ajustar Modelo Personalizado'.
431
+ 4. Selecciona el 'Tipo de Modelo para Gráficos' (Simplificado, Completo o Personalizado).
432
+ 5. Select 'Variable Fija' and 'Nivel de Variable Fija'.
433
+ 6. Click 'Generar Gráficos'.
434
+ 7. Navega entre los gráficos usando los botones '<' y '>'.
435
+ 8. Descarga el gráfico actual en PNG o descarga todos los gráficos en un ZIP.
436
+ 9. Descarga todas las tablas en un archivo Excel o Word con los botones correspondientes.
437
  """)
438
 
439
  return demo