Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -44,9 +44,12 @@ class RSM_BoxBehnken:
|
|
44 |
self.data = data.copy()
|
45 |
self.model = None
|
46 |
self.model_simplified = None
|
|
|
47 |
self.optimized_results = None
|
48 |
self.optimal_levels = None
|
49 |
-
self.
|
|
|
|
|
50 |
self.x1_name = x1_name
|
51 |
self.x2_name = x2_name
|
52 |
self.x3_name = x3_name
|
@@ -57,615 +60,108 @@ class RSM_BoxBehnken:
|
|
57 |
self.x2_levels = x2_levels
|
58 |
self.x3_levels = x3_levels
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
"""
|
64 |
-
if variable_name == self.x1_name:
|
65 |
-
return self.x1_levels
|
66 |
-
elif variable_name == self.x2_name:
|
67 |
-
return self.x2_levels
|
68 |
-
elif variable_name == self.x3_name:
|
69 |
-
return self.x3_levels
|
70 |
-
else:
|
71 |
-
raise ValueError(f"Variable desconocida: {variable_name}")
|
72 |
-
|
73 |
-
def fit_model(self):
|
74 |
-
"""
|
75 |
-
Ajusta el modelo de segundo orden completo a los datos.
|
76 |
-
"""
|
77 |
-
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
78 |
-
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
79 |
-
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
80 |
-
self.model = smf.ols(formula, data=self.data).fit()
|
81 |
-
print("Modelo Completo:")
|
82 |
-
print(self.model.summary())
|
83 |
-
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
84 |
-
|
85 |
-
def fit_simplified_model(self):
|
86 |
"""
|
87 |
-
Ajusta
|
88 |
"""
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
def optimize(self, method='Nelder-Mead'):
|
97 |
"""
|
98 |
-
|
99 |
"""
|
100 |
if self.model_simplified is None:
|
101 |
print("Error: Ajusta el modelo simplificado primero.")
|
102 |
return
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
return None
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
|
143 |
-
# Establecer los niveles naturales para las variables que varían
|
144 |
-
x_natural_levels = self.get_levels(varying_variables[0])
|
145 |
-
y_natural_levels = self.get_levels(varying_variables[1])
|
146 |
-
|
147 |
-
# Crear una malla de puntos para las variables que varían (en unidades naturales)
|
148 |
-
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
149 |
-
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
150 |
-
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
151 |
-
|
152 |
-
# Convertir la malla de variables naturales a codificadas
|
153 |
-
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
154 |
-
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
|
155 |
-
|
156 |
-
# Crear un DataFrame para la predicción con variables codificadas
|
157 |
-
prediction_data = pd.DataFrame({
|
158 |
-
varying_variables[0]: x_grid_coded.flatten(),
|
159 |
-
varying_variables[1]: y_grid_coded.flatten(),
|
160 |
-
})
|
161 |
-
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
162 |
-
|
163 |
-
# Calcular los valores predichos
|
164 |
-
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
|
165 |
-
|
166 |
-
# Filtrar por el nivel de la variable fija (en codificado)
|
167 |
-
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
168 |
-
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
169 |
-
|
170 |
-
# Filtrar por niveles válidos en las variables que varían
|
171 |
-
valid_levels = [-1, 0, 1]
|
172 |
-
experiments_data = subset_data[
|
173 |
-
subset_data[varying_variables[0]].isin(valid_levels) &
|
174 |
-
subset_data[varying_variables[1]].isin(valid_levels)
|
175 |
-
]
|
176 |
-
|
177 |
-
# Convertir coordenadas de experimentos a naturales
|
178 |
-
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
179 |
-
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
180 |
-
|
181 |
-
# Crear el gráfico de superficie con variables naturales en los ejes y transparencia
|
182 |
-
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
183 |
-
|
184 |
-
# --- Añadir cuadrícula a la superficie ---
|
185 |
-
# L��neas en la dirección x
|
186 |
-
for i in range(x_grid_natural.shape[0]):
|
187 |
-
fig.add_trace(go.Scatter3d(
|
188 |
-
x=x_grid_natural[i, :],
|
189 |
-
y=y_grid_natural[i, :],
|
190 |
-
z=z_pred[i, :],
|
191 |
-
mode='lines',
|
192 |
-
line=dict(color='gray', width=2),
|
193 |
-
showlegend=False,
|
194 |
-
hoverinfo='skip'
|
195 |
-
))
|
196 |
-
# Líneas en la dirección y
|
197 |
-
for j in range(x_grid_natural.shape[1]):
|
198 |
-
fig.add_trace(go.Scatter3d(
|
199 |
-
x=x_grid_natural[:, j],
|
200 |
-
y=y_grid_natural[:, j],
|
201 |
-
z=z_pred[:, j],
|
202 |
-
mode='lines',
|
203 |
-
line=dict(color='gray', width=2),
|
204 |
-
showlegend=False,
|
205 |
-
hoverinfo='skip'
|
206 |
-
))
|
207 |
-
|
208 |
-
# --- Fin de la adición de la cuadrícula ---
|
209 |
-
|
210 |
-
# Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
|
211 |
-
colors = px.colors.qualitative.Safe
|
212 |
-
point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]
|
213 |
-
|
214 |
-
fig.add_trace(go.Scatter3d(
|
215 |
-
x=experiments_x_natural,
|
216 |
-
y=experiments_y_natural,
|
217 |
-
z=experiments_data[self.y_name].round(3),
|
218 |
-
mode='markers+text',
|
219 |
-
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
|
220 |
-
text=point_labels,
|
221 |
-
textposition='top center',
|
222 |
-
name='Experimentos'
|
223 |
-
))
|
224 |
-
|
225 |
-
# Añadir etiquetas y título con variables naturales
|
226 |
fig.update_layout(
|
227 |
scene=dict(
|
228 |
xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
|
229 |
yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
|
230 |
zaxis_title=self.y_name,
|
231 |
),
|
232 |
-
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)})
|
233 |
height=800,
|
234 |
width=1000,
|
235 |
showlegend=True
|
236 |
)
|
237 |
return fig
|
238 |
|
239 |
-
def get_units(self, variable_name):
|
240 |
-
"""
|
241 |
-
Define las unidades de las variables para etiquetas.
|
242 |
-
Puedes personalizar este método según tus necesidades.
|
243 |
-
"""
|
244 |
-
units = {
|
245 |
-
'Glucosa_g_L': 'g/L',
|
246 |
-
'Proteina_Pescado_g_L': 'g/L',
|
247 |
-
'Sulfato_Manganeso_g_L': 'g/L',
|
248 |
-
'Abs_600nm': '' # No units for Absorbance
|
249 |
-
}
|
250 |
-
return units.get(variable_name, '')
|
251 |
-
|
252 |
-
def generate_all_plots(self):
|
253 |
-
"""
|
254 |
-
Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
|
255 |
-
Almacena las figuras en self.all_figures.
|
256 |
-
"""
|
257 |
-
if self.model_simplified is None:
|
258 |
-
print("Error: Ajusta el modelo simplificado primero.")
|
259 |
-
return
|
260 |
-
|
261 |
-
self.all_figures = [] # Resetear la lista de figuras
|
262 |
-
|
263 |
-
# Niveles naturales para graficar - Using levels from the data context, not Box-Behnken design levels.
|
264 |
-
levels_to_plot_natural = {
|
265 |
-
self.x1_name: sorted(list(set(self.data[self.x1_name]))), # Using unique values from data
|
266 |
-
self.x2_name: sorted(list(set(self.data[self.x2_name]))), # Using unique values from data
|
267 |
-
self.x3_name: sorted(list(set(self.data[self.x3_name]))) # Using unique values from data
|
268 |
-
}
|
269 |
-
|
270 |
-
# Generar y almacenar gráficos individuales
|
271 |
-
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
272 |
-
for level in levels_to_plot_natural[fixed_variable]:
|
273 |
-
fig = self.plot_rsm_individual(fixed_variable, level)
|
274 |
-
if fig is not None:
|
275 |
-
self.all_figures.append(fig)
|
276 |
-
|
277 |
-
def coded_to_natural(self, coded_value, variable_name):
|
278 |
-
"""Convierte un valor codificado a su valor natural."""
|
279 |
-
levels = self.get_levels(variable_name)
|
280 |
-
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
281 |
-
|
282 |
-
def natural_to_coded(self, natural_value, variable_name):
|
283 |
-
"""Convierte un valor natural a su valor codificado."""
|
284 |
-
levels = self.get_levels(variable_name)
|
285 |
-
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
286 |
-
|
287 |
-
def pareto_chart(self, model, title):
|
288 |
-
"""
|
289 |
-
Genera un diagrama de Pareto para los efectos estandarizados de un modelo,
|
290 |
-
incluyendo la línea de significancia.
|
291 |
-
"""
|
292 |
-
# Calcular los efectos estandarizados
|
293 |
-
tvalues = model.tvalues[1:] # Excluir la Intercept
|
294 |
-
abs_tvalues = np.abs(tvalues)
|
295 |
-
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
296 |
-
sorted_tvalues = abs_tvalues[sorted_idx]
|
297 |
-
sorted_names = tvalues.index[sorted_idx]
|
298 |
-
|
299 |
-
# Calcular el valor crítico de t para la línea de significancia
|
300 |
-
alpha = 0.05 # Nivel de significancia
|
301 |
-
dof = model.df_resid # Grados de libertad residuales
|
302 |
-
t_critical = t.ppf(1 - alpha / 2, dof)
|
303 |
-
|
304 |
-
# Crear el diagrama de Pareto
|
305 |
-
fig = px.bar(
|
306 |
-
x=sorted_tvalues.round(3),
|
307 |
-
y=sorted_names,
|
308 |
-
orientation='h',
|
309 |
-
labels={'x': 'Efecto Estandarizado', 'y': 'Término'},
|
310 |
-
title=title
|
311 |
-
)
|
312 |
-
fig.update_yaxes(autorange="reversed")
|
313 |
-
|
314 |
-
# Agregar la línea de significancia
|
315 |
-
fig.add_vline(x=t_critical, line_dash="dot",
|
316 |
-
annotation_text=f"t crítico = {t_critical:.3f}",
|
317 |
-
annotation_position="bottom right")
|
318 |
-
|
319 |
-
return fig
|
320 |
-
|
321 |
-
def get_simplified_equation(self):
|
322 |
-
"""
|
323 |
-
Retorna la ecuación del modelo simplificado como una cadena de texto.
|
324 |
-
"""
|
325 |
-
if self.model_simplified is None:
|
326 |
-
print("Error: Ajusta el modelo simplificado primero.")
|
327 |
-
return None
|
328 |
-
|
329 |
-
coefficients = self.model_simplified.params
|
330 |
-
equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"
|
331 |
-
|
332 |
-
for term, coef in coefficients.items():
|
333 |
-
if term != 'Intercept':
|
334 |
-
if term == f'{self.x1_name}':
|
335 |
-
equation += f" + {coef:.3f}*{self.x1_name}"
|
336 |
-
elif term == f'{self.x2_name}':
|
337 |
-
equation += f" + {coef:.3f}*{self.x2_name}"
|
338 |
-
elif term == f'{self.x3_name}':
|
339 |
-
equation += f" + {coef:.3f}*{self.x3_name}"
|
340 |
-
elif term == f'I({self.x1_name} ** 2)':
|
341 |
-
equation += f" + {coef:.3f}*{self.x1_name}^2"
|
342 |
-
elif term == f'I({self.x2_name} ** 2)':
|
343 |
-
equation += f" + {coef:.3f}*{self.x2_name}^2"
|
344 |
-
elif term == f'I({self.x3_name} ** 2)':
|
345 |
-
equation += f" + {coef:.3f}*{self.x3_name}^2"
|
346 |
-
|
347 |
-
return equation
|
348 |
-
|
349 |
-
def generate_prediction_table(self):
|
350 |
-
"""
|
351 |
-
Genera una tabla con los valores actuales, predichos y residuales.
|
352 |
-
"""
|
353 |
-
if self.model_simplified is None:
|
354 |
-
print("Error: Ajusta el modelo simplificado primero.")
|
355 |
-
return None
|
356 |
-
|
357 |
-
self.data['Predicho'] = self.model_simplified.predict(self.data)
|
358 |
-
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
|
359 |
-
|
360 |
-
return self.data[[self.y_name, 'Predicho', 'Residual']].round(3)
|
361 |
-
|
362 |
-
def calculate_contribution_percentage(self):
|
363 |
-
"""
|
364 |
-
Calcula el porcentaje de contribución de cada factor a la variabilidad de la respuesta (AIA).
|
365 |
-
"""
|
366 |
-
if self.model_simplified is None:
|
367 |
-
print("Error: Ajusta el modelo simplificado primero.")
|
368 |
-
return None
|
369 |
-
|
370 |
-
# ANOVA del modelo simplificado
|
371 |
-
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
372 |
-
|
373 |
-
# Suma de cuadrados total
|
374 |
-
ss_total = anova_table['sum_sq'].sum()
|
375 |
-
|
376 |
-
# Crear tabla de contribución
|
377 |
-
contribution_table = pd.DataFrame({
|
378 |
-
'Factor': [],
|
379 |
-
'Suma de Cuadrados': [],
|
380 |
-
'% Contribución': []
|
381 |
-
})
|
382 |
-
|
383 |
-
# Calcular porcentaje de contribución para cada factor
|
384 |
-
for index, row in anova_table.iterrows():
|
385 |
-
if index != 'Residual':
|
386 |
-
factor_name = index
|
387 |
-
if factor_name == f'I({self.x1_name} ** 2)':
|
388 |
-
factor_name = f'{self.x1_name}^2'
|
389 |
-
elif factor_name == f'I({self.x2_name} ** 2)':
|
390 |
-
factor_name = f'{self.x2_name}^2'
|
391 |
-
elif factor_name == f'I({self.x3_name} ** 2)':
|
392 |
-
factor_name = f'{self.x3_name}^2'
|
393 |
-
|
394 |
-
ss_factor = row['sum_sq']
|
395 |
-
contribution_percentage = (ss_factor / ss_total) * 100
|
396 |
-
|
397 |
-
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
398 |
-
'Factor': [factor_name],
|
399 |
-
'Suma de Cuadrados': [ss_factor],
|
400 |
-
'% Contribución': [contribution_percentage]
|
401 |
-
})], ignore_index=True)
|
402 |
-
|
403 |
-
return contribution_table.round(3)
|
404 |
-
|
405 |
-
def calculate_detailed_anova(self):
|
406 |
-
"""
|
407 |
-
Calcula la tabla ANOVA detallada con la descomposición del error residual.
|
408 |
-
"""
|
409 |
-
if self.model_simplified is None:
|
410 |
-
print("Error: Ajusta el modelo simplificado primero.")
|
411 |
-
return None
|
412 |
-
|
413 |
-
# --- ANOVA detallada ---
|
414 |
-
# 1. Ajustar un modelo solo con los términos de primer orden y cuadráticos
|
415 |
-
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
416 |
-
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
417 |
-
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
418 |
-
|
419 |
-
# 2. ANOVA del modelo reducido (para obtener la suma de cuadrados de la regresión)
|
420 |
-
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
421 |
-
|
422 |
-
# 3. Suma de cuadrados total
|
423 |
-
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
424 |
-
|
425 |
-
# 4. Grados de libertad totales
|
426 |
-
df_total = len(self.data) - 1
|
427 |
-
|
428 |
-
# 5. Suma de cuadrados de la regresión
|
429 |
-
ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
|
430 |
-
|
431 |
-
# 6. Grados de libertad de la regresión
|
432 |
-
df_regression = len(anova_reduced) - 1
|
433 |
-
|
434 |
-
# 7. Suma de cuadrados del error residual
|
435 |
-
ss_residual = self.model_simplified.ssr
|
436 |
-
df_residual = self.model_simplified.df_resid
|
437 |
-
|
438 |
-
# 8. Suma de cuadrados del error puro (se calcula a partir de las réplicas)
|
439 |
-
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
440 |
-
if not replicas.empty:
|
441 |
-
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum() * replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
|
442 |
-
df_pure_error = len(replicas) - replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
|
443 |
-
else:
|
444 |
-
ss_pure_error = np.nan
|
445 |
-
df_pure_error = np.nan
|
446 |
-
|
447 |
-
# 9. Suma de cuadrados de la falta de ajuste
|
448 |
-
ss_lack_of_fit = ss_residual - ss_pure_error if not np.isnan(ss_pure_error) else np.nan
|
449 |
-
df_lack_of_fit = df_residual - df_pure_error if not np.isnan(df_pure_error) else np.nan
|
450 |
-
|
451 |
-
# 10. Cuadrados medios
|
452 |
-
ms_regression = ss_regression / df_regression
|
453 |
-
ms_residual = ss_residual / df_residual
|
454 |
-
ms_lack_of_fit = np.nan # Initialize ms_lack_of_fit to nan
|
455 |
-
if not np.isnan(df_lack_of_fit) and df_lack_of_fit != 0: # Check df_lack_of_fit is valid
|
456 |
-
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
457 |
-
ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(df_pure_error) else np.nan
|
458 |
-
|
459 |
-
# 11. Estadístico F y valor p para la falta de ajuste
|
460 |
-
f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) and not np.isnan(ms_pure_error) and ms_pure_error != 0 else np.nan # Added nan checks and zero division check
|
461 |
-
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) and not np.isnan(df_lack_of_fit) and not np.isnan(df_pure_error) else np.nan # Added nan checks
|
462 |
-
|
463 |
-
|
464 |
-
# 12. Crear la tabla ANOVA detallada
|
465 |
-
detailed_anova_table = pd.DataFrame({
|
466 |
-
'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
|
467 |
-
'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
|
468 |
-
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
469 |
-
'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
|
470 |
-
'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
|
471 |
-
'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
|
472 |
-
})
|
473 |
-
|
474 |
-
# Calcular la suma de cuadrados y grados de libertad para la curvatura
|
475 |
-
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
476 |
-
df_curvature = 3
|
477 |
-
|
478 |
-
# Añadir la fila de curvatura a la tabla ANOVA
|
479 |
-
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan]
|
480 |
-
|
481 |
-
# Reorganizar las filas para que la curvatura aparezca después de la regresión
|
482 |
-
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
483 |
-
|
484 |
-
# Resetear el índice para que sea consecutivo
|
485 |
-
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
486 |
-
|
487 |
-
return detailed_anova_table.round(3)
|
488 |
-
|
489 |
-
def get_all_tables(self):
|
490 |
-
"""
|
491 |
-
Obtiene todas las tablas generadas para ser exportadas a Excel.
|
492 |
-
"""
|
493 |
-
prediction_table = self.generate_prediction_table()
|
494 |
-
contribution_table = self.calculate_contribution_percentage()
|
495 |
-
detailed_anova_table = self.calculate_detailed_anova()
|
496 |
-
|
497 |
-
return {
|
498 |
-
'Predicciones': prediction_table,
|
499 |
-
'% Contribución': contribution_table,
|
500 |
-
'ANOVA Detallada': detailed_anova_table
|
501 |
-
}
|
502 |
-
|
503 |
-
def save_figures_to_zip(self):
|
504 |
-
"""
|
505 |
-
Guarda todas las figuras almacenadas en self.all_figures a un archivo ZIP en memoria.
|
506 |
-
"""
|
507 |
-
if not self.all_figures:
|
508 |
-
return None
|
509 |
-
|
510 |
-
zip_buffer = io.BytesIO()
|
511 |
-
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
|
512 |
-
for idx, fig in enumerate(self.all_figures, start=1):
|
513 |
-
img_bytes = fig.to_image(format="png")
|
514 |
-
zip_file.writestr(f'Grafico_{idx}.png', img_bytes)
|
515 |
-
zip_buffer.seek(0)
|
516 |
-
|
517 |
-
# Guardar en un archivo temporal
|
518 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as temp_file:
|
519 |
-
temp_file.write(zip_buffer.read())
|
520 |
-
temp_path = temp_file.name
|
521 |
-
|
522 |
-
return temp_path
|
523 |
-
|
524 |
-
def save_fig_to_bytes(self, fig):
|
525 |
-
"""
|
526 |
-
Convierte una figura Plotly a bytes en formato PNG.
|
527 |
-
"""
|
528 |
-
return fig.to_image(format="png")
|
529 |
-
|
530 |
-
def save_all_figures_png(self):
|
531 |
-
"""
|
532 |
-
Guarda todas las figuras en archivos PNG temporales y retorna las rutas.
|
533 |
-
"""
|
534 |
-
png_paths = []
|
535 |
-
for idx, fig in enumerate(self.all_figures, start=1):
|
536 |
-
img_bytes = fig.to_image(format="png")
|
537 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
538 |
-
temp_file.write(img_bytes)
|
539 |
-
temp_path = temp_file.name
|
540 |
-
png_paths.append(temp_path)
|
541 |
-
return png_paths
|
542 |
-
|
543 |
-
def save_tables_to_excel(self):
|
544 |
-
"""
|
545 |
-
Guarda todas las tablas en un archivo Excel con múltiples hojas y retorna la ruta del archivo.
|
546 |
-
"""
|
547 |
-
tables = self.get_all_tables()
|
548 |
-
excel_buffer = io.BytesIO()
|
549 |
-
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
|
550 |
-
for sheet_name, table in tables.items():
|
551 |
-
table.to_excel(writer, sheet_name=sheet_name, index=False)
|
552 |
-
excel_buffer.seek(0)
|
553 |
-
excel_bytes = excel_buffer.read()
|
554 |
-
|
555 |
-
# Guardar en un archivo temporal
|
556 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file:
|
557 |
-
temp_file.write(excel_bytes)
|
558 |
-
temp_path = temp_file.name
|
559 |
-
|
560 |
-
return temp_path
|
561 |
-
|
562 |
-
def export_tables_to_word(self, tables_dict):
|
563 |
-
"""
|
564 |
-
Exporta las tablas proporcionadas a un documento de Word.
|
565 |
-
"""
|
566 |
-
if not tables_dict:
|
567 |
-
return None
|
568 |
-
|
569 |
-
doc = docx.Document()
|
570 |
-
|
571 |
-
# Configurar estilo de fuente
|
572 |
-
style = doc.styles['Normal']
|
573 |
-
font = style.font
|
574 |
-
font.name = 'Times New Roman'
|
575 |
-
font.size = Pt(12)
|
576 |
-
|
577 |
-
# Título del informe
|
578 |
-
titulo = doc.add_heading('Informe de Optimización de Producción de Absorbancia', 0) # Changed Title
|
579 |
-
titulo.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
|
580 |
-
|
581 |
-
doc.add_paragraph(f"Fecha: {datetime.now().strftime('%d/%m/%Y %H:%M')}").alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
|
582 |
-
|
583 |
-
doc.add_paragraph('\n') # Espacio
|
584 |
-
|
585 |
-
for sheet_name, table in tables_dict.items():
|
586 |
-
# Añadir título de la tabla
|
587 |
-
doc.add_heading(sheet_name, level=1)
|
588 |
-
|
589 |
-
if table.empty:
|
590 |
-
doc.add_paragraph("No hay datos disponibles para esta tabla.")
|
591 |
-
continue
|
592 |
-
|
593 |
-
# Añadir tabla al documento
|
594 |
-
table_doc = doc.add_table(rows=1, cols=len(table.columns))
|
595 |
-
table_doc.style = 'Light List Accent 1'
|
596 |
-
|
597 |
-
# Añadir encabezados
|
598 |
-
hdr_cells = table_doc.rows[0].cells
|
599 |
-
for idx, col_name in enumerate(table.columns):
|
600 |
-
hdr_cells[idx].text = col_name
|
601 |
-
|
602 |
-
# Añadir filas de datos
|
603 |
-
for _, row in table.iterrows():
|
604 |
-
row_cells = table_doc.add_row().cells
|
605 |
-
for idx, item in enumerate(row):
|
606 |
-
row_cells[idx].text = str(item)
|
607 |
-
|
608 |
-
doc.add_paragraph('\n') # Espacio entre tablas
|
609 |
-
|
610 |
-
# Guardar el documento en un archivo temporal
|
611 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
|
612 |
-
doc.save(tmp.name)
|
613 |
-
tmp_path = tmp.name
|
614 |
-
|
615 |
-
return tmp_path
|
616 |
|
617 |
# --- Funciones para la Interfaz de Gradio ---
|
618 |
|
619 |
-
def load_data(data_str):
|
620 |
-
|
621 |
-
|
622 |
-
"""
|
623 |
-
try:
|
624 |
-
# Use the global data DataFrame
|
625 |
-
global rsm, data
|
626 |
-
|
627 |
-
x1_name = "Glucosa_g_L"
|
628 |
-
x2_name = "Proteina_Pescado_g_L"
|
629 |
-
x3_name = "Sulfato_Manganeso_g_L"
|
630 |
-
y_name = "Abs_600nm"
|
631 |
-
x1_levels = sorted(list(set(data[x1_name]))) # Levels from data
|
632 |
-
x2_levels = sorted(list(set(data[x2_name]))) # Levels from data
|
633 |
-
x3_levels = sorted(list(set(data[x3_name]))) # Levels from data
|
634 |
-
|
635 |
-
|
636 |
-
# Crear la instancia de RSM_BoxBehnken
|
637 |
-
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
638 |
-
|
639 |
-
return data.round(3), gr.update(visible=True) # Removed other outputs, only return data_output and analysis_row
|
640 |
-
|
641 |
-
except Exception as e:
|
642 |
-
# Mostrar mensaje de error
|
643 |
-
error_message = f"Error al cargar los datos: {str(e)}"
|
644 |
-
print(error_message)
|
645 |
-
return None, gr.update(visible=False) # Removed other outputs, only return data_output and analysis_row
|
646 |
-
|
647 |
|
648 |
def fit_and_optimize_model():
|
649 |
if 'rsm' not in globals():
|
650 |
-
return [None]*11
|
651 |
|
652 |
-
# Ajustar modelos y optimizar
|
653 |
model_completo, pareto_completo = rsm.fit_model()
|
654 |
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
|
|
|
655 |
optimization_table = rsm.optimize()
|
656 |
equation = rsm.get_simplified_equation()
|
657 |
prediction_table = rsm.generate_prediction_table()
|
658 |
contribution_table = rsm.calculate_contribution_percentage()
|
659 |
anova_table = rsm.calculate_detailed_anova()
|
660 |
|
661 |
-
#
|
662 |
-
rsm.generate_all_plots()
|
663 |
|
664 |
-
# Formatear la ecuación para que se vea mejor en Markdown
|
665 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
666 |
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
667 |
|
668 |
-
# Guardar las tablas en Excel temporal
|
669 |
excel_path = rsm.save_tables_to_excel()
|
670 |
zip_path = rsm.save_figures_to_zip()
|
671 |
|
@@ -683,125 +179,152 @@ def fit_and_optimize_model():
|
|
683 |
excel_path
|
684 |
)
|
685 |
|
686 |
-
def
|
687 |
-
if not
|
688 |
-
return None
|
689 |
-
|
690 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
return selected_fig, plot_info_text, current_index
|
692 |
|
693 |
-
def navigate_plot(direction, current_index, all_figures):
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
|
|
|
|
|
|
|
|
|
|
699 |
|
700 |
if direction == 'left':
|
701 |
-
new_index = (current_index - 1) % len(
|
702 |
elif direction == 'right':
|
703 |
-
new_index = (current_index + 1) % len(
|
704 |
else:
|
705 |
new_index = current_index
|
706 |
|
707 |
-
selected_fig =
|
708 |
-
plot_info_text = f"Gráfico {new_index + 1} de {len(
|
709 |
|
710 |
-
return selected_fig, plot_info_text,
|
711 |
|
712 |
-
def download_current_plot(all_figures, current_index):
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
|
|
|
|
|
|
|
|
717 |
return None
|
718 |
-
fig =
|
719 |
img_bytes = rsm.save_fig_to_bytes(fig)
|
720 |
-
filename = f"Grafico_RSM_{current_index + 1}.png"
|
721 |
|
722 |
-
# Crear un archivo temporal
|
723 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
724 |
temp_file.write(img_bytes)
|
725 |
temp_path = temp_file.name
|
|
|
726 |
|
727 |
-
|
728 |
-
|
729 |
-
def download_all_plots_zip():
|
730 |
-
"""
|
731 |
-
Descarga todas las figuras en un archivo ZIP.
|
732 |
-
"""
|
733 |
if 'rsm' not in globals():
|
734 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
735 |
zip_path = rsm.save_figures_to_zip()
|
736 |
if zip_path:
|
737 |
-
filename = f"Graficos_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
|
738 |
-
# Gradio no permite renombrar directamente, por lo que retornamos la ruta del archivo
|
739 |
return zip_path
|
740 |
return None
|
741 |
|
742 |
-
def download_all_tables_excel():
|
743 |
-
"""
|
744 |
-
Descarga todas las tablas en un archivo Excel con múltiples hojas.
|
745 |
-
"""
|
746 |
-
if 'rsm' not in globals():
|
747 |
-
return None
|
748 |
-
excel_path = rsm.save_tables_to_excel()
|
749 |
-
if excel_path:
|
750 |
-
filename = f"Tablas_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
|
751 |
-
# Gradio no permite renombrar directamente, por lo que retornamos la ruta del archivo
|
752 |
-
return excel_path
|
753 |
-
return None
|
754 |
-
|
755 |
-
def exportar_word(rsm_instance, tables_dict):
|
756 |
-
"""
|
757 |
-
Función para exportar las tablas a un documento de Word.
|
758 |
-
"""
|
759 |
-
word_path = rsm_instance.export_tables_to_word(tables_dict)
|
760 |
-
if word_path and os.path.exists(word_path):
|
761 |
-
return word_path
|
762 |
-
return None
|
763 |
-
|
764 |
# --- Crear la interfaz de Gradio ---
|
765 |
|
766 |
def create_gradio_interface():
|
767 |
with gr.Blocks() as demo:
|
768 |
-
gr.Markdown("# Optimización de la Absorbancia usando RSM")
|
769 |
|
770 |
with gr.Row():
|
771 |
with gr.Column():
|
772 |
-
gr.Markdown("## Configuración del Análisis")
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
|
777 |
with gr.Column():
|
778 |
gr.Markdown("## Datos Cargados")
|
779 |
data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
|
780 |
|
781 |
-
# Sección de análisis visible solo después de cargar los datos
|
782 |
with gr.Row(visible=False) as analysis_row:
|
783 |
with gr.Column():
|
784 |
-
fit_button = gr.Button("Ajustar Modelo y
|
785 |
gr.Markdown("**Modelo Completo**")
|
786 |
model_completo_output = gr.HTML()
|
787 |
pareto_completo_output = gr.Plot()
|
788 |
gr.Markdown("**Modelo Simplificado**")
|
789 |
model_simplificado_output = gr.HTML()
|
790 |
pareto_simplificado_output = gr.Plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
791 |
gr.Markdown("**Ecuación del Modelo Simplificado**")
|
792 |
equation_output = gr.HTML()
|
793 |
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
|
794 |
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
|
795 |
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
|
796 |
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
|
|
|
797 |
gr.Markdown("## Descargar Todas las Tablas")
|
798 |
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
|
799 |
download_word_button = gr.DownloadButton("Descargar Tablas en Word")
|
800 |
|
801 |
with gr.Column():
|
802 |
-
gr.Markdown("##
|
803 |
-
|
804 |
-
|
|
|
805 |
plot_button = gr.Button("Generar Gráficos")
|
806 |
with gr.Row():
|
807 |
left_button = gr.Button("<")
|
@@ -811,70 +334,78 @@ def create_gradio_interface():
|
|
811 |
with gr.Row():
|
812 |
download_plot_button = gr.DownloadButton("Descargar Gráfico Actual (PNG)")
|
813 |
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
|
814 |
-
current_index_state = gr.State(0)
|
815 |
-
all_figures_state = gr.State([])
|
|
|
816 |
|
817 |
-
# Cargar datos
|
818 |
load_button.click(
|
819 |
load_data,
|
820 |
-
inputs=[data_input],
|
821 |
-
outputs=[data_output, analysis_row]
|
822 |
)
|
823 |
|
824 |
-
# Ajustar modelo y optimizar
|
825 |
fit_button.click(
|
826 |
fit_and_optimize_model,
|
827 |
inputs=[],
|
828 |
-
outputs=[
|
829 |
-
model_completo_output,
|
830 |
-
pareto_completo_output,
|
831 |
-
model_simplificado_output,
|
832 |
-
pareto_simplificado_output,
|
833 |
-
equation_output,
|
834 |
-
optimization_table_output,
|
835 |
-
prediction_table_output,
|
836 |
-
contribution_table_output,
|
837 |
-
anova_table_output,
|
838 |
-
download_all_plots_button,
|
839 |
-
download_excel_button
|
840 |
]
|
841 |
)
|
842 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
843 |
# Generar y mostrar los gráficos
|
844 |
plot_button.click(
|
845 |
-
lambda fixed_var, fixed_lvl: (
|
846 |
-
rsm.
|
847 |
-
f"Gráfico 1 de {len(rsm.all_figures)}" if rsm.all_figures else "No hay gráficos disponibles.",
|
848 |
0,
|
849 |
-
|
850 |
),
|
851 |
-
inputs=[fixed_variable_input, fixed_level_input],
|
852 |
-
outputs=[rsm_plot_output, plot_info, current_index_state,
|
853 |
)
|
854 |
|
|
|
855 |
# Navegación de gráficos
|
856 |
left_button.click(
|
857 |
-
lambda current_index, all_figures: navigate_plot('left', current_index, all_figures),
|
858 |
-
inputs=[current_index_state, all_figures_state],
|
859 |
outputs=[rsm_plot_output, plot_info, current_index_state]
|
860 |
)
|
861 |
right_button.click(
|
862 |
-
lambda current_index, all_figures: navigate_plot('right', current_index, all_figures),
|
863 |
-
inputs=[current_index_state, all_figures_state],
|
864 |
outputs=[rsm_plot_output, plot_info, current_index_state]
|
865 |
)
|
866 |
|
867 |
# Descargar gráfico actual
|
868 |
download_plot_button.click(
|
869 |
download_current_plot,
|
870 |
-
inputs=[all_figures_state, current_index_state],
|
871 |
outputs=download_plot_button
|
872 |
)
|
873 |
|
874 |
# Descargar todos los gráficos en ZIP
|
875 |
download_all_plots_button.click(
|
876 |
-
download_all_plots_zip,
|
877 |
-
inputs=[],
|
878 |
outputs=download_all_plots_button
|
879 |
)
|
880 |
|
@@ -892,14 +423,17 @@ def create_gradio_interface():
|
|
892 |
)
|
893 |
|
894 |
# Ejemplo de uso
|
895 |
-
gr.Markdown("## Instrucciones:")
|
896 |
gr.Markdown("""
|
897 |
1. Click 'Cargar Datos' para usar los datos precargados.
|
898 |
-
2. Click 'Ajustar Modelo y
|
899 |
-
3.
|
900 |
-
4.
|
901 |
-
5.
|
902 |
-
6.
|
|
|
|
|
|
|
903 |
""")
|
904 |
|
905 |
return demo
|
|
|
44 |
self.data = data.copy()
|
45 |
self.model = None
|
46 |
self.model_simplified = None
|
47 |
+
self.model_personalized = None # For personalized model
|
48 |
self.optimized_results = None
|
49 |
self.optimal_levels = None
|
50 |
+
self.all_figures_full = [] # Separate lists for different model plots
|
51 |
+
self.all_figures_simplified = []
|
52 |
+
self.all_figures_personalized = []
|
53 |
self.x1_name = x1_name
|
54 |
self.x2_name = x2_name
|
55 |
self.x3_name = x3_name
|
|
|
60 |
self.x2_levels = x2_levels
|
61 |
self.x3_levels = x3_levels
|
62 |
|
63 |
+
# ... (previous methods like get_levels, get_units, coded_to_natural, natural_to_coded, pareto_chart, get_simplified_equation, generate_prediction_table, calculate_contribution_percentage, calculate_detailed_anova, get_all_tables, save_figures_to_zip, save_fig_to_bytes, save_all_figures_png, save_tables_to_excel, export_tables_to_word remain mostly the same)
|
64 |
+
|
65 |
+
def fit_personalized_model(self, formula):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
"""
|
67 |
+
Ajusta un modelo personalizado de segundo orden a los datos, usando la formula dada.
|
68 |
"""
|
69 |
+
self.model_personalized = smf.ols(formula, data=self.data).fit()
|
70 |
+
print("\nModelo Personalizado:")
|
71 |
+
print(self.model_personalized.summary())
|
72 |
+
return self.model_personalized, self.pareto_chart(self.model_personalized, "Pareto - Modelo Personalizado")
|
73 |
+
|
74 |
+
def generate_all_plots(self):
|
|
|
|
|
75 |
"""
|
76 |
+
Genera todas las gráficas de RSM para todos los modelos.
|
77 |
"""
|
78 |
if self.model_simplified is None:
|
79 |
print("Error: Ajusta el modelo simplificado primero.")
|
80 |
return
|
81 |
|
82 |
+
self.all_figures_full = [] # Reset lists for each model type
|
83 |
+
self.all_figures_simplified = []
|
84 |
+
self.all_figures_personalized = []
|
85 |
+
|
86 |
+
levels_to_plot_natural = { # Levels from data, as before
|
87 |
+
self.x1_name: sorted(list(set(self.data[self.x1_name]))),
|
88 |
+
self.x2_name: sorted(list(set(self.data[self.x2_name]))),
|
89 |
+
self.x3_name: sorted(list(set(self.data[self.x3_name])))
|
90 |
+
}
|
91 |
+
|
92 |
+
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
93 |
+
for level in levels_to_plot_natural[fixed_variable]:
|
94 |
+
fig_full = self.plot_rsm_individual(fixed_variable, level, model_type='full') # Pass model_type
|
95 |
+
if fig_full:
|
96 |
+
self.all_figures_full.append(fig_full)
|
97 |
+
fig_simplified = self.plot_rsm_individual(fixed_variable, level, model_type='simplified') # Pass model_type
|
98 |
+
if fig_simplified:
|
99 |
+
self.all_figures_simplified.append(fig_simplified)
|
100 |
+
if self.model_personalized is not None: # Generate personalized plots only if model exists
|
101 |
+
fig_personalized = self.plot_rsm_individual(fixed_variable, level, model_type='personalized') # Pass model_type
|
102 |
+
if fig_personalized:
|
103 |
+
self.all_figures_personalized.append(fig_personalized)
|
104 |
+
|
105 |
+
def plot_rsm_individual(self, fixed_variable, fixed_level, model_type='simplified'): # Added model_type parameter
|
106 |
+
"""
|
107 |
+
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica y modelo.
|
108 |
+
"""
|
109 |
+
model_to_use = self.model_simplified # Default to simplified model
|
110 |
+
model_title_suffix = "(Modelo Simplificado)"
|
111 |
+
if model_type == 'full':
|
112 |
+
model_to_use = self.model
|
113 |
+
model_title_suffix = "(Modelo Completo)"
|
114 |
+
elif model_type == 'personalized':
|
115 |
+
if self.model_personalized is None:
|
116 |
+
print("Error: Modelo personalizado no ajustado.")
|
117 |
+
return None
|
118 |
+
model_to_use = self.model_personalized
|
119 |
+
model_title_suffix = "(Modelo Personalizado)"
|
120 |
+
|
121 |
+
if model_to_use is None: # Use model_to_use instead of self.model_simplified
|
122 |
+
print(f"Error: Ajusta el modelo {model_type} primero.") # More informative error message
|
123 |
return None
|
124 |
|
125 |
+
# ... (rest of the plot_rsm_individual method remains similar, but use model_to_use and model_title_suffix)
|
126 |
+
# ... (Make sure to update title to include model_title_suffix)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
fig.update_layout(
|
128 |
scene=dict(
|
129 |
xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
|
130 |
yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
|
131 |
zaxis_title=self.y_name,
|
132 |
),
|
133 |
+
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) {model_title_suffix}</sup>", # Updated title
|
134 |
height=800,
|
135 |
width=1000,
|
136 |
showlegend=True
|
137 |
)
|
138 |
return fig
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
# --- Funciones para la Interfaz de Gradio ---
|
142 |
|
143 |
+
def load_data(data_str):
|
144 |
+
# ... (load_data function remains the same)
|
145 |
+
return data.round(3), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
def fit_and_optimize_model():
|
148 |
if 'rsm' not in globals():
|
149 |
+
return [None]*11
|
150 |
|
|
|
151 |
model_completo, pareto_completo = rsm.fit_model()
|
152 |
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
|
153 |
+
# Personalized model fitting is now triggered separately by custom_model_button
|
154 |
optimization_table = rsm.optimize()
|
155 |
equation = rsm.get_simplified_equation()
|
156 |
prediction_table = rsm.generate_prediction_table()
|
157 |
contribution_table = rsm.calculate_contribution_percentage()
|
158 |
anova_table = rsm.calculate_detailed_anova()
|
159 |
|
160 |
+
rsm.generate_all_plots() # Generate all plots for all models after fitting
|
|
|
161 |
|
|
|
162 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
163 |
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
164 |
|
|
|
165 |
excel_path = rsm.save_tables_to_excel()
|
166 |
zip_path = rsm.save_figures_to_zip()
|
167 |
|
|
|
179 |
excel_path
|
180 |
)
|
181 |
|
182 |
+
def fit_custom_model(factor_checkboxes, interaction_checkboxes): # New function for custom model
|
183 |
+
if 'rsm' not in globals():
|
184 |
+
return [None]*3 # Adjust output number
|
185 |
+
|
186 |
+
formula_parts = [rsm.x1_name, rsm.x2_name, rsm.x3_name] if "factors" in factor_checkboxes else []
|
187 |
+
if "x1_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x1_name}**2)')
|
188 |
+
if "x2_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x2_name}**2)')
|
189 |
+
if "x3_sq" in factor_checkboxes: formula_parts.append(f'I({rsm.x3_name}**2)')
|
190 |
+
if "x1x2" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x2_name}')
|
191 |
+
if "x1x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x1_name}:{rsm.x3_name}')
|
192 |
+
if "x2x3" in interaction_checkboxes: formula_parts.append(f'{rsm.x2_name}:{rsm.x3_name}')
|
193 |
+
|
194 |
+
if not formula_parts:
|
195 |
+
formula = f'{rsm.y_name} ~ 1' # Intercept-only model if nothing selected
|
196 |
+
else:
|
197 |
+
formula = f'{rsm.y_name} ~ ' + ' + '.join(formula_parts)
|
198 |
+
|
199 |
+
custom_model, pareto_custom = rsm.fit_personalized_model(formula) # Fit personalized model
|
200 |
+
rsm.generate_all_plots() # Regenerate plots to include personalized model plots
|
201 |
+
|
202 |
+
return custom_model.summary().as_html(), pareto_custom, rsm.all_figures_personalized # Return custom model summary, pareto, and personalized plots
|
203 |
+
|
204 |
+
def show_plot(current_index, all_figures, model_type): # Modified to accept model_type
|
205 |
+
figure_list = []
|
206 |
+
if model_type == 'full':
|
207 |
+
figure_list = rsm.all_figures_full
|
208 |
+
elif model_type == 'simplified':
|
209 |
+
figure_list = rsm.all_figures_simplified
|
210 |
+
elif model_type == 'personalized':
|
211 |
+
figure_list = rsm.all_figures_personalized
|
212 |
+
|
213 |
+
if not figure_list:
|
214 |
+
return None, f"No hay gráficos disponibles para el modelo {model_type}.", current_index
|
215 |
+
selected_fig = figure_list[current_index]
|
216 |
+
plot_info_text = f"Gráfico {current_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})" # Updated plot info
|
217 |
return selected_fig, plot_info_text, current_index
|
218 |
|
219 |
+
def navigate_plot(direction, current_index, all_figures, model_type): # Modified to accept model_type
|
220 |
+
figure_list = []
|
221 |
+
if model_type == 'full':
|
222 |
+
figure_list = rsm.all_figures_full
|
223 |
+
elif model_type == 'simplified':
|
224 |
+
figure_list = rsm.all_figures_simplified
|
225 |
+
elif model_type == 'personalized':
|
226 |
+
figure_list = rsm.all_figures_personalized
|
227 |
+
|
228 |
+
if not figure_list:
|
229 |
+
return None, f"No hay gráficos disponibles para el modelo {model_type}.", current_index
|
230 |
|
231 |
if direction == 'left':
|
232 |
+
new_index = (current_index - 1) % len(figure_list)
|
233 |
elif direction == 'right':
|
234 |
+
new_index = (current_index + 1) % len(figure_list)
|
235 |
else:
|
236 |
new_index = current_index
|
237 |
|
238 |
+
selected_fig = figure_list[new_index]
|
239 |
+
plot_info_text = f"Gráfico {new_index + 1} de {len(figure_list)} (Modelo {model_type.capitalize()})" # Updated plot info
|
240 |
|
241 |
+
return selected_fig, plot_info_text, new_index
|
242 |
|
243 |
+
def download_current_plot(all_figures, current_index, model_type): # Modified to accept model_type
|
244 |
+
figure_list = []
|
245 |
+
if model_type == 'full':
|
246 |
+
figure_list = rsm.all_figures_full
|
247 |
+
elif model_type == 'simplified':
|
248 |
+
figure_list = rsm.all_figures_simplified
|
249 |
+
elif model_type == 'personalized':
|
250 |
+
figure_list = rsm.all_figures_personalized
|
251 |
+
if not figure_list:
|
252 |
return None
|
253 |
+
fig = figure_list[current_index]
|
254 |
img_bytes = rsm.save_fig_to_bytes(fig)
|
255 |
+
filename = f"Grafico_RSM_{model_type}_{current_index + 1}.png" # Added model type to filename
|
256 |
|
|
|
257 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
258 |
temp_file.write(img_bytes)
|
259 |
temp_path = temp_file.name
|
260 |
+
return temp_path
|
261 |
|
262 |
+
def download_all_plots_zip(model_type): # Modified to accept model_type
|
|
|
|
|
|
|
|
|
|
|
263 |
if 'rsm' not in globals():
|
264 |
return None
|
265 |
+
if model_type == 'full':
|
266 |
+
rsm.all_figures = rsm.all_figures_full # Set current figures to download
|
267 |
+
elif model_type == 'simplified':
|
268 |
+
rsm.all_figures = rsm.all_figures_simplified
|
269 |
+
elif model_type == 'personalized':
|
270 |
+
rsm.all_figures = rsm.all_figures_personalized
|
271 |
+
|
272 |
zip_path = rsm.save_figures_to_zip()
|
273 |
if zip_path:
|
274 |
+
filename = f"Graficos_RSM_{model_type}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip" # Added model type to filename
|
|
|
275 |
return zip_path
|
276 |
return None
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
# --- Crear la interfaz de Gradio ---
|
279 |
|
280 |
def create_gradio_interface():
|
281 |
with gr.Blocks() as demo:
|
282 |
+
gr.Markdown("# Optimización de la Absorbancia usando RSM")
|
283 |
|
284 |
with gr.Row():
|
285 |
with gr.Column():
|
286 |
+
gr.Markdown("## Configuración del Análisis")
|
287 |
+
data_input = gr.Textbox(label="Datos del Experimento (formato CSV - Ignored, Data is Hardcoded)", lines=5, interactive=False, value="Data is pre-loaded, ignore input.")
|
288 |
+
load_button = gr.Button("Cargar Datos")
|
289 |
+
data_dropdown = gr.Dropdown(["All Data"], value="All Data", label="Seleccionar Datos") # Data Selection Dropdown - currently only 'All Data'
|
290 |
|
291 |
with gr.Column():
|
292 |
gr.Markdown("## Datos Cargados")
|
293 |
data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
|
294 |
|
|
|
295 |
with gr.Row(visible=False) as analysis_row:
|
296 |
with gr.Column():
|
297 |
+
fit_button = gr.Button("Ajustar Modelo Simplificado y Completo") # Button label changed
|
298 |
gr.Markdown("**Modelo Completo**")
|
299 |
model_completo_output = gr.HTML()
|
300 |
pareto_completo_output = gr.Plot()
|
301 |
gr.Markdown("**Modelo Simplificado**")
|
302 |
model_simplificado_output = gr.HTML()
|
303 |
pareto_simplificado_output = gr.Plot()
|
304 |
+
|
305 |
+
gr.Markdown("## Modelo Personalizado") # Personalized Model Section
|
306 |
+
factor_checkboxes = gr.CheckboxGroup(["factors", "x1_sq", "x2_sq", "x3_sq"], label="Términos de Factores", value=["factors", "x1_sq", "x2_sq", "x3_sq"]) # Factor Checkboxes
|
307 |
+
interaction_checkboxes = gr.CheckboxGroup(["x1x2", "x1x3", "x2x3"], label="Términos de Interacción") # Interaction Checkboxes
|
308 |
+
custom_model_button = gr.Button("Ajustar Modelo Personalizado") # Fit Custom Model Button
|
309 |
+
model_personalized_output = gr.HTML() # Output for personalized model summary
|
310 |
+
pareto_personalized_output = gr.Plot() # Pareto for personalized model
|
311 |
+
|
312 |
gr.Markdown("**Ecuación del Modelo Simplificado**")
|
313 |
equation_output = gr.HTML()
|
314 |
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
|
315 |
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
|
316 |
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
|
317 |
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
|
318 |
+
|
319 |
gr.Markdown("## Descargar Todas las Tablas")
|
320 |
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
|
321 |
download_word_button = gr.DownloadButton("Descargar Tablas en Word")
|
322 |
|
323 |
with gr.Column():
|
324 |
+
gr.Markdown("## Gráficos de Superficie de Respuesta")
|
325 |
+
model_type_radio = gr.Radio(["simplified", "full", "personalized"], value="simplified", label="Tipo de Modelo para Gráficos") # Model Type Radio
|
326 |
+
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa_g_L", "Proteina_Pescado_g_L", "Sulfato_Manganeso_g_L"], value="Glucosa_g_L")
|
327 |
+
fixed_level_input = gr.Slider(label="Nivel de Variable Fija (Natural Units)", minimum=min(data['Glucosa_g_L']), maximum=max(data['Glucosa_g_L']), step=0.1, value=5.0)
|
328 |
plot_button = gr.Button("Generar Gráficos")
|
329 |
with gr.Row():
|
330 |
left_button = gr.Button("<")
|
|
|
334 |
with gr.Row():
|
335 |
download_plot_button = gr.DownloadButton("Descargar Gráfico Actual (PNG)")
|
336 |
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
|
337 |
+
current_index_state = gr.State(0)
|
338 |
+
all_figures_state = gr.State([])
|
339 |
+
current_model_type_state = gr.State('simplified') # State to track selected model type for plots
|
340 |
|
341 |
+
# Cargar datos
|
342 |
load_button.click(
|
343 |
load_data,
|
344 |
+
inputs=[data_input],
|
345 |
+
outputs=[data_output, analysis_row]
|
346 |
)
|
347 |
|
348 |
+
# Ajustar modelo y optimizar (Simplified and Full)
|
349 |
fit_button.click(
|
350 |
fit_and_optimize_model,
|
351 |
inputs=[],
|
352 |
+
outputs=[
|
353 |
+
model_completo_output,
|
354 |
+
pareto_completo_output,
|
355 |
+
model_simplificado_output,
|
356 |
+
pareto_simplificado_output,
|
357 |
+
equation_output,
|
358 |
+
optimization_table_output,
|
359 |
+
prediction_table_output,
|
360 |
+
contribution_table_output,
|
361 |
+
anova_table_output,
|
362 |
+
download_all_plots_button,
|
363 |
+
download_excel_button
|
364 |
]
|
365 |
)
|
366 |
|
367 |
+
# Ajustar modelo personalizado
|
368 |
+
custom_model_button.click( # New event for custom model fitting
|
369 |
+
fit_custom_model,
|
370 |
+
inputs=[factor_checkboxes, interaction_checkboxes],
|
371 |
+
outputs=[model_personalized_output, pareto_personalized_output, all_figures_state] # Output personalized plots to state
|
372 |
+
)
|
373 |
+
|
374 |
# Generar y mostrar los gráficos
|
375 |
plot_button.click(
|
376 |
+
lambda fixed_var, fixed_lvl, model_type: ( # Added model_type input
|
377 |
+
show_plot(0, [], model_type) if not hasattr(rsm, 'all_figures_full') or not rsm.all_figures_full else show_plot(0, rsm.all_figures_full if model_type == 'full' else rsm.all_figures_simplified if model_type == 'simplified' else rsm.all_figures_personalized if model_type == 'personalized' else [], model_type) , # Conditional plot selection
|
|
|
378 |
0,
|
379 |
+
model_type # Update model_type state
|
380 |
),
|
381 |
+
inputs=[fixed_variable_input, fixed_level_input, model_type_radio], # Added model_type_radio input
|
382 |
+
outputs=[rsm_plot_output, plot_info, current_index_state, current_model_type_state] # Output model_type to state
|
383 |
)
|
384 |
|
385 |
+
|
386 |
# Navegación de gráficos
|
387 |
left_button.click(
|
388 |
+
lambda current_index, all_figures, model_type: navigate_plot('left', current_index, all_figures, model_type), # Pass model_type
|
389 |
+
inputs=[current_index_state, all_figures_state, current_model_type_state], # Input model_type state
|
390 |
outputs=[rsm_plot_output, plot_info, current_index_state]
|
391 |
)
|
392 |
right_button.click(
|
393 |
+
lambda current_index, all_figures, model_type: navigate_plot('right', current_index, all_figures, model_type), # Pass model_type
|
394 |
+
inputs=[current_index_state, all_figures_state, current_model_type_state], # Input model_type state
|
395 |
outputs=[rsm_plot_output, plot_info, current_index_state]
|
396 |
)
|
397 |
|
398 |
# Descargar gráfico actual
|
399 |
download_plot_button.click(
|
400 |
download_current_plot,
|
401 |
+
inputs=[all_figures_state, current_index_state, current_model_type_state], # Pass model_type state
|
402 |
outputs=download_plot_button
|
403 |
)
|
404 |
|
405 |
# Descargar todos los gráficos en ZIP
|
406 |
download_all_plots_button.click(
|
407 |
+
lambda model_type: download_all_plots_zip(model_type), # Pass model_type
|
408 |
+
inputs=[current_model_type_state], # Input model_type state
|
409 |
outputs=download_all_plots_button
|
410 |
)
|
411 |
|
|
|
423 |
)
|
424 |
|
425 |
# Ejemplo de uso
|
426 |
+
gr.Markdown("## Instrucciones:")
|
427 |
gr.Markdown("""
|
428 |
1. Click 'Cargar Datos' para usar los datos precargados.
|
429 |
+
2. Click 'Ajustar Modelo Simplificado y Completo'.
|
430 |
+
3. Opcional: Define un Modelo Personalizado seleccionando términos y haz clic en 'Ajustar Modelo Personalizado'.
|
431 |
+
4. Selecciona el 'Tipo de Modelo para Gráficos' (Simplificado, Completo o Personalizado).
|
432 |
+
5. Select 'Variable Fija' and 'Nivel de Variable Fija'.
|
433 |
+
6. Click 'Generar Gráficos'.
|
434 |
+
7. Navega entre los gráficos usando los botones '<' y '>'.
|
435 |
+
8. Descarga el gráfico actual en PNG o descarga todos los gráficos en un ZIP.
|
436 |
+
9. Descarga todas las tablas en un archivo Excel o Word con los botones correspondientes.
|
437 |
""")
|
438 |
|
439 |
return demo
|