Bhaskar2611's picture
Update app.py
1dff96b verified
raw
history blame
22.9 kB
# import os
# import re
# import json
# import gradio as gr
# import pandas as pd
# import pdfplumber
# import pytesseract
# from pdf2image import convert_from_path
# from huggingface_hub import InferenceClient
# # Initialize with reliable free model
# hf_token = os.getenv("HF_TOKEN")
# client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token)
# def extract_excel_data(file_path):
# """Extract text from Excel file"""
# df = pd.read_excel(file_path, engine='openpyxl')
# return df.to_string(index=False)
# def extract_text_from_pdf(pdf_path, is_scanned=False):
# """Extract text from PDF with fallback OCR"""
# try:
# # Try native PDF extraction first
# with pdfplumber.open(pdf_path) as pdf:
# text = ""
# for page in pdf.pages:
# # Extract tables first for structured data
# tables = page.extract_tables()
# for table in tables:
# for row in table:
# text += " | ".join(str(cell) for cell in row) + "\n"
# text += "\n"
# # Extract text for unstructured data
# page_text = page.extract_text()
# if page_text:
# text += page_text + "\n\n"
# return text
# except Exception as e:
# print(f"Native PDF extraction failed: {str(e)}")
# # Fallback to OCR for scanned PDFs
# images = convert_from_path(pdf_path, dpi=200)
# text = ""
# for image in images:
# text += pytesseract.image_to_string(image) + "\n"
# return text
# def parse_bank_statement(text):
# """Parse bank statement using LLM with fallback to rule-based parser"""
# # Clean text and remove non-essential lines
# cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
# cleaned_text = re.sub(r'Page \d+ of \d+', '', cleaned_text, flags=re.IGNORECASE)
# cleaned_text = re.sub(r'CropBox.*?MediaBox', '', cleaned_text, flags=re.IGNORECASE)
# # Keep only lines that look like transactions
# transaction_lines = []
# for line in cleaned_text.split('\n'):
# if re.match(r'^\d{4}-\d{2}-\d{2}', line): # Date pattern
# transaction_lines.append(line)
# elif '|' in line and any(x in line for x in ['Date', 'Amount', 'Balance']):
# transaction_lines.append(line)
# cleaned_text = "\n".join(transaction_lines)
# print(f"Cleaned text sample: {cleaned_text[:200]}...")
# # Try rule-based parsing first for structured data
# rule_based_data = rule_based_parser(cleaned_text)
# if rule_based_data["transactions"]:
# print("Using rule-based parser results")
# return rule_based_data
# # Fallback to LLM for unstructured data
# print("Falling back to LLM parsing")
# return llm_parser(cleaned_text)
# def llm_parser(text):
# """LLM parser for unstructured text"""
# # Craft precise prompt with strict JSON formatting instructions
# prompt = f"""
# <|system|>
# You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON.
# </s>
# <|user|>
# Extract all transactions from this bank statement with these exact fields:
# - date (format: YYYY-MM-DD)
# - description
# - amount (format: 0.00)
# - debit (format: 0.00)
# - credit (format: 0.00)
# - closing_balance (format: 0.00 or -0.00 for negative)
# - category
# Statement text:
# {text[:3000]} [truncated if too long]
# Return JSON with this exact structure:
# {{
# "transactions": [
# {{
# "date": "2025-05-08",
# "description": "Company XYZ Payroll",
# "amount": "8315.40",
# "debit": "0.00",
# "credit": "8315.40",
# "closing_balance": "38315.40",
# "category": "Salary"
# }}
# ]
# }}
# RULES:
# 1. Output ONLY the JSON object with no additional text
# 2. Keep amounts as strings with 2 decimal places
# 3. For missing values, use empty strings
# 4. Convert negative amounts to format "-123.45"
# 5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc
# </s>
# <|assistant|>
# """
# try:
# # Call LLM via Hugging Face Inference API
# response = client.text_generation(
# prompt,
# max_new_tokens=2000,
# temperature=0.01,
# stop=["</s>"] # Updated to 'stop' parameter
# )
# print(f"LLM Response: {response}")
# # Validate and clean JSON response
# response = response.strip()
# if not response.startswith('{'):
# # Find the first { and last } to extract JSON
# start_idx = response.find('{')
# end_idx = response.rfind('}')
# if start_idx != -1 and end_idx != -1:
# response = response[start_idx:end_idx+1]
# # Parse JSON and validate structure
# data = json.loads(response)
# if "transactions" not in data:
# raise ValueError("Missing 'transactions' key in JSON")
# return data
# except Exception as e:
# print(f"LLM Error: {str(e)}")
# return {"transactions": []}
# def rule_based_parser(text):
# """Enhanced fallback parser for structured tables"""
# lines = [line.strip() for line in text.split('\n') if line.strip()]
# # Find header line - more flexible detection
# header_index = None
# header_patterns = [
# r'Date\b', r'Description\b', r'Amount\b',
# r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
# ]
# for i, line in enumerate(lines):
# if any(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
# header_index = i
# break
# if header_index is None:
# return {"transactions": []}
# data_lines = lines[header_index + 1:]
# transactions = []
# for line in data_lines:
# # Handle both pipe-delimited and space-delimited formats
# if '|' in line:
# parts = [p.strip() for p in line.split('|') if p.strip()]
# else:
# # Space-delimited format - split while preserving multi-word descriptions
# parts = []
# current = ""
# in_description = False
# for char in line:
# if char == ' ' and not in_description:
# if current:
# parts.append(current)
# current = ""
# # After date field, we're in description
# if len(parts) == 1:
# in_description = True
# else:
# current += char
# if current:
# parts.append(current)
# if len(parts) < 7:
# continue
# try:
# transactions.append({
# "date": parts[0],
# "description": parts[1],
# "amount": format_number(parts[2]),
# "debit": format_number(parts[3]),
# "credit": format_number(parts[4]),
# "closing_balance": format_number(parts[5]),
# "category": parts[6]
# })
# except Exception as e:
# print(f"Error parsing line: {str(e)}")
# return {"transactions": transactions}
# def format_number(value):
# """Format numeric values consistently"""
# if not value:
# return "0.00"
# # Clean numeric values
# value = value.replace(',', '').replace('$', '').strip()
# # Handle negative numbers in parentheses
# if '(' in value and ')' in value:
# value = '-' + value.replace('(', '').replace(')', '')
# # Standardize decimal format
# if '.' not in value:
# value += '.00'
# # Ensure two decimal places
# try:
# return f"{float(value):.2f}"
# except:
# return value
# def process_file(file, is_scanned):
# """Main processing function"""
# if not file:
# return pd.DataFrame(columns=[
# "Date", "Description", "Amount", "Debit",
# "Credit", "Closing Balance", "Category"
# ])
# file_path = file.name
# file_ext = os.path.splitext(file_path)[1].lower()
# try:
# if file_ext == '.xlsx':
# text = extract_excel_data(file_path)
# elif file_ext == '.pdf':
# text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
# else:
# return pd.DataFrame(columns=[
# "Date", "Description", "Amount", "Debit",
# "Credit", "Closing Balance", "Category"
# ])
# parsed_data = parse_bank_statement(text)
# df = pd.DataFrame(parsed_data["transactions"])
# # Ensure all required columns exist
# required_cols = ["date", "description", "amount", "debit",
# "credit", "closing_balance", "category"]
# for col in required_cols:
# if col not in df.columns:
# df[col] = ""
# # Format columns properly
# df.columns = ["Date", "Description", "Amount", "Debit",
# "Credit", "Closing Balance", "Category"]
# return df
# except Exception as e:
# print(f"Processing error: {str(e)}")
# # Return empty DataFrame with correct columns on error
# return pd.DataFrame(columns=[
# "Date", "Description", "Amount", "Debit",
# "Credit", "Closing Balance", "Category"
# ])
# # Gradio Interface
# interface = gr.Interface(
# fn=process_file,
# inputs=[
# gr.File(label="Upload Bank Statement (PDF/Excel)"),
# gr.Checkbox(label="Is Scanned PDF? (Use OCR)")
# ],
# outputs=gr.Dataframe(
# label="Parsed Transactions",
# headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
# datatype=["date", "str", "number", "number", "number", "number", "str"]
# ),
# title="AI Bank Statement Parser",
# description="Extract structured transaction data from PDF/Excel bank statements",
# allow_flagging="never"
# )
# if __name__ == "__main__":
# interface.launch()
import os
import re
import json
import gradio as gr
import pandas as pd
import pdfplumber
import pytesseract
from pdf2image import convert_from_path
from huggingface_hub import InferenceClient
# Initialize with reliable free model
hf_token = os.getenv("HF_TOKEN")
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token)
def extract_excel_data(file_path):
"""Extract text from Excel file"""
df = pd.read_excel(file_path, engine='openpyxl')
return df.to_string(index=False)
def extract_text_from_pdf(pdf_path, is_scanned=False):
"""Extract text from PDF with fallback OCR"""
try:
# Try native PDF extraction first
with pdfplumber.open(pdf_path) as pdf:
text = ""
for page in pdf.pages:
# Extract tables first for structured data
tables = page.extract_tables()
for table in tables:
for row in table:
text += " | ".join(str(cell) for cell in row) + "\n"
text += "\n"
# Extract text for unstructured data
page_text = page.extract_text()
if page_text:
text += page_text + "\n\n"
return text
except Exception as e:
print(f"Native PDF extraction failed: {str(e)}")
# Fallback to OCR for scanned PDFs
images = convert_from_path(pdf_path, dpi=200)
text = ""
for image in images:
text += pytesseract.image_to_string(image) + "\n"
return text
def parse_bank_statement(text, file_type):
"""Parse bank statement using LLM with fallback to rule-based parser"""
# Clean text differently based on file type
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
if file_type == 'pdf':
# PDF-specific cleaning
cleaned_text = re.sub(r'Page \d+ of \d+', '', cleaned_text, flags=re.IGNORECASE)
cleaned_text = re.sub(r'CropBox.*?MediaBox', '', cleaned_text, flags=re.IGNORECASE)
# Keep only lines that look like transactions
transaction_lines = []
for line in cleaned_text.split('\n'):
if re.match(r'^\d{4}-\d{2}-\d{2}', line): # Date pattern
transaction_lines.append(line)
elif '|' in line and any(x in line for x in ['Date', 'Amount', 'Balance']):
transaction_lines.append(line)
cleaned_text = "\n".join(transaction_lines)
print(f"Cleaned text sample: {cleaned_text[:200]}...")
# Try rule-based parsing first for structured data
rule_based_data = rule_based_parser(cleaned_text)
if rule_based_data["transactions"]:
print("Using rule-based parser results")
return rule_based_data
# Fallback to LLM for unstructured data
print("Falling back to LLM parsing")
return llm_parser(cleaned_text)
def llm_parser(text):
"""LLM parser for unstructured text"""
# Craft precise prompt with strict JSON formatting instructions
prompt = f"""
<|system|>
You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON.
</s>
<|user|>
Extract all transactions from this bank statement with these exact fields:
- date (format: YYYY-MM-DD)
- description
- amount (format: 0.00)
- debit (format: 0.00)
- credit (format: 0.00)
- closing_balance (format: 0.00 or -0.00 for negative)
- category
Statement text:
{text[:3000]} [truncated if too long]
Return JSON with this exact structure:
{{
"transactions": [
{{
"date": "2025-05-08",
"description": "Company XYZ Payroll",
"amount": "8315.40",
"debit": "0.00",
"credit": "8315.40",
"closing_balance": "38315.40",
"category": "Salary"
}}
]
}}
RULES:
1. Output ONLY the JSON object with no additional text
2. Keep amounts as strings with 2 decimal places
3. For missing values, use empty strings
4. Convert negative amounts to format "-123.45"
5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc
</s>
<|assistant|>
"""
try:
# Call LLM via Hugging Face Inference API
response = client.text_generation(
prompt,
max_new_tokens=2000,
temperature=0.01,
stop=["</s>"] # Updated to 'stop' parameter
)
print(f"LLM Response: {response}")
# Validate and clean JSON response
response = response.strip()
if not response.startswith('{'):
# Find the first { and last } to extract JSON
start_idx = response.find('{')
end_idx = response.rfind('}')
if start_idx != -1 and end_idx != -1:
response = response[start_idx:end_idx+1]
# Parse JSON and validate structure
data = json.loads(response)
if "transactions" not in data:
raise ValueError("Missing 'transactions' key in JSON")
return data
except Exception as e:
print(f"LLM Error: {str(e)}")
return {"transactions": []}
def rule_based_parser(text):
"""Enhanced fallback parser for structured tables"""
lines = [line.strip() for line in text.split('\n') if line.strip()]
# Find header line - more flexible detection
header_index = None
header_patterns = [
r'Date\b', r'Description\b', r'Amount\b',
r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
]
# First try: Look for a full header line
for i, line in enumerate(lines):
if all(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns[:3]):
header_index = i
break
# Second try: Look for any header indicators
if header_index is None:
for i, line in enumerate(lines):
if any(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
header_index = i
break
# Third try: Look for pipe-delimited headers
if header_index is None:
for i, line in enumerate(lines):
if '|' in line and any(p in line for p in ['Date', 'Amount', 'Balance']):
header_index = i
break
if header_index is None:
return {"transactions": []}
data_lines = lines[header_index + 1:]
transactions = []
for line in data_lines:
# Handle both pipe-delimited and space-delimited formats
if '|' in line:
parts = [p.strip() for p in line.split('|') if p.strip()]
else:
# Space-delimited format - split by 2+ spaces
parts = re.split(r'\s{2,}', line)
# Skip lines that don't have enough parts
if len(parts) < 7:
continue
try:
# Handle transaction date validation
if not re.match(r'\d{4}-\d{2}-\d{2}', parts[0]):
continue
transactions.append({
"date": parts[0],
"description": parts[1],
"amount": format_number(parts[2]),
"debit": format_number(parts[3]),
"credit": format_number(parts[4]),
"closing_balance": format_number(parts[5]),
"category": parts[6]
})
except Exception as e:
print(f"Error parsing line: {str(e)}")
return {"transactions": transactions}
def format_number(value):
"""Format numeric values consistently"""
if not value or str(value).lower() in ['nan', 'nat']:
return "0.00"
# If it's already a number, format directly
if isinstance(value, (int, float)):
return f"{value:.2f}"
# Clean string values
value = str(value).replace(',', '').replace('$', '').strip()
# Handle negative numbers in parentheses
if '(' in value and ')' in value:
value = '-' + value.replace('(', '').replace(')', '')
# Handle empty values
if not value:
return "0.00"
# Standardize decimal format
if '.' not in value:
value += '.00'
# Ensure two decimal places
try:
num_value = float(value)
return f"{num_value:.2f}"
except ValueError:
# If we can't convert to float, return original but clean it
return value.split('.')[0] + '.' + value.split('.')[1][:2].ljust(2, '0')
def process_file(file, is_scanned):
"""Main processing function"""
if not file:
return empty_df()
file_path = file.name
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.xlsx':
# Directly process Excel files without text conversion
df = pd.read_excel(file_path, engine='openpyxl')
# Normalize column names
df.columns = df.columns.str.strip().str.lower()
# Create mapping to expected columns
col_mapping = {
'date': 'date',
'description': 'description',
'amount': 'amount',
'debit': 'debit',
'credit': 'credit',
'closing balance': 'closing_balance',
'closing': 'closing_balance',
'balance': 'closing_balance',
'category': 'category'
}
# Create output DataFrame with required columns
output_df = pd.DataFrame()
for col in ['date', 'description', 'amount', 'debit', 'credit', 'closing_balance', 'category']:
if col in df.columns:
output_df[col] = df[col]
elif any(alias in col_mapping and col_mapping[alias] == col for alias in df.columns):
# Find alias
for alias in df.columns:
if alias in col_mapping and col_mapping[alias] == col:
output_df[col] = df[alias]
break
else:
output_df[col] = ""
# Format numeric columns
for col in ['amount', 'debit', 'credit', 'closing_balance']:
output_df[col] = output_df[col].apply(format_number)
# Rename columns for display
output_df.columns = ["Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"]
return output_df
elif file_ext == '.pdf':
text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
parsed_data = parse_bank_statement(text, 'pdf')
df = pd.DataFrame(parsed_data["transactions"])
# Ensure all required columns exist
required_cols = ["date", "description", "amount", "debit",
"credit", "closing_balance", "category"]
for col in required_cols:
if col not in df.columns:
df[col] = ""
# Format columns properly
df.columns = ["Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"]
return df
else:
return empty_df()
except Exception as e:
print(f"Processing error: {str(e)}")
return empty_df()
def empty_df():
"""Return empty DataFrame with correct columns"""
return pd.DataFrame(columns=["Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"])
# Gradio Interface
interface = gr.Interface(
fn=process_file,
inputs=[
gr.File(label="Upload Bank Statement (PDF/Excel)"),
gr.Checkbox(label="Is Scanned PDF? (Use OCR)")
],
outputs=gr.Dataframe(
label="Parsed Transactions",
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
datatype=["date", "str", "number", "number", "number", "number", "str"]
),
title="AI Bank Statement Parser",
description="Extract structured transaction data from PDF/Excel bank statements",
allow_flagging="never"
)
if __name__ == "__main__":
interface.launch()