Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import json
|
@@ -45,22 +343,26 @@ def extract_text_from_pdf(pdf_path, is_scanned=False):
|
|
45 |
text += pytesseract.image_to_string(image) + "\n"
|
46 |
return text
|
47 |
|
48 |
-
def parse_bank_statement(text):
|
49 |
"""Parse bank statement using LLM with fallback to rule-based parser"""
|
50 |
-
# Clean text
|
51 |
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
print(f"Cleaned text sample: {cleaned_text[:200]}...")
|
65 |
|
66 |
# Try rule-based parsing first for structured data
|
@@ -158,11 +460,26 @@ def rule_based_parser(text):
|
|
158 |
r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
|
159 |
]
|
160 |
|
|
|
161 |
for i, line in enumerate(lines):
|
162 |
-
if
|
163 |
header_index = i
|
164 |
break
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
if header_index is None:
|
167 |
return {"transactions": []}
|
168 |
|
@@ -174,27 +491,18 @@ def rule_based_parser(text):
|
|
174 |
if '|' in line:
|
175 |
parts = [p.strip() for p in line.split('|') if p.strip()]
|
176 |
else:
|
177 |
-
# Space-delimited format - split
|
178 |
-
parts =
|
179 |
-
current = ""
|
180 |
-
in_description = False
|
181 |
-
for char in line:
|
182 |
-
if char == ' ' and not in_description:
|
183 |
-
if current:
|
184 |
-
parts.append(current)
|
185 |
-
current = ""
|
186 |
-
# After date field, we're in description
|
187 |
-
if len(parts) == 1:
|
188 |
-
in_description = True
|
189 |
-
else:
|
190 |
-
current += char
|
191 |
-
if current:
|
192 |
-
parts.append(current)
|
193 |
|
|
|
194 |
if len(parts) < 7:
|
195 |
continue
|
196 |
|
197 |
try:
|
|
|
|
|
|
|
|
|
198 |
transactions.append({
|
199 |
"date": parts[0],
|
200 |
"description": parts[1],
|
@@ -211,70 +519,116 @@ def rule_based_parser(text):
|
|
211 |
|
212 |
def format_number(value):
|
213 |
"""Format numeric values consistently"""
|
214 |
-
if not value:
|
215 |
return "0.00"
|
216 |
|
217 |
-
#
|
218 |
-
|
|
|
|
|
|
|
|
|
219 |
|
220 |
# Handle negative numbers in parentheses
|
221 |
if '(' in value and ')' in value:
|
222 |
value = '-' + value.replace('(', '').replace(')', '')
|
223 |
|
|
|
|
|
|
|
|
|
224 |
# Standardize decimal format
|
225 |
if '.' not in value:
|
226 |
value += '.00'
|
227 |
|
228 |
# Ensure two decimal places
|
229 |
try:
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
233 |
|
234 |
def process_file(file, is_scanned):
|
235 |
"""Main processing function"""
|
236 |
if not file:
|
237 |
-
return
|
238 |
-
"Date", "Description", "Amount", "Debit",
|
239 |
-
"Credit", "Closing Balance", "Category"
|
240 |
-
])
|
241 |
|
242 |
file_path = file.name
|
243 |
file_ext = os.path.splitext(file_path)[1].lower()
|
244 |
|
245 |
try:
|
246 |
if file_ext == '.xlsx':
|
247 |
-
text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
elif file_ext == '.pdf':
|
249 |
text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
"credit", "closing_balance", "category"]
|
262 |
-
for col in required_cols:
|
263 |
-
if col not in df.columns:
|
264 |
-
df[col] = ""
|
265 |
-
|
266 |
-
# Format columns properly
|
267 |
-
df.columns = ["Date", "Description", "Amount", "Debit",
|
268 |
-
"Credit", "Closing Balance", "Category"]
|
269 |
-
return df
|
270 |
|
271 |
except Exception as e:
|
272 |
print(f"Processing error: {str(e)}")
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
278 |
|
279 |
# Gradio Interface
|
280 |
interface = gr.Interface(
|
|
|
1 |
+
# import os
|
2 |
+
# import re
|
3 |
+
# import json
|
4 |
+
# import gradio as gr
|
5 |
+
# import pandas as pd
|
6 |
+
# import pdfplumber
|
7 |
+
# import pytesseract
|
8 |
+
# from pdf2image import convert_from_path
|
9 |
+
# from huggingface_hub import InferenceClient
|
10 |
+
|
11 |
+
# # Initialize with reliable free model
|
12 |
+
# hf_token = os.getenv("HF_TOKEN")
|
13 |
+
# client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token)
|
14 |
+
|
15 |
+
# def extract_excel_data(file_path):
|
16 |
+
# """Extract text from Excel file"""
|
17 |
+
# df = pd.read_excel(file_path, engine='openpyxl')
|
18 |
+
# return df.to_string(index=False)
|
19 |
+
|
20 |
+
# def extract_text_from_pdf(pdf_path, is_scanned=False):
|
21 |
+
# """Extract text from PDF with fallback OCR"""
|
22 |
+
# try:
|
23 |
+
# # Try native PDF extraction first
|
24 |
+
# with pdfplumber.open(pdf_path) as pdf:
|
25 |
+
# text = ""
|
26 |
+
# for page in pdf.pages:
|
27 |
+
# # Extract tables first for structured data
|
28 |
+
# tables = page.extract_tables()
|
29 |
+
# for table in tables:
|
30 |
+
# for row in table:
|
31 |
+
# text += " | ".join(str(cell) for cell in row) + "\n"
|
32 |
+
# text += "\n"
|
33 |
+
|
34 |
+
# # Extract text for unstructured data
|
35 |
+
# page_text = page.extract_text()
|
36 |
+
# if page_text:
|
37 |
+
# text += page_text + "\n\n"
|
38 |
+
# return text
|
39 |
+
# except Exception as e:
|
40 |
+
# print(f"Native PDF extraction failed: {str(e)}")
|
41 |
+
# # Fallback to OCR for scanned PDFs
|
42 |
+
# images = convert_from_path(pdf_path, dpi=200)
|
43 |
+
# text = ""
|
44 |
+
# for image in images:
|
45 |
+
# text += pytesseract.image_to_string(image) + "\n"
|
46 |
+
# return text
|
47 |
+
|
48 |
+
# def parse_bank_statement(text):
|
49 |
+
# """Parse bank statement using LLM with fallback to rule-based parser"""
|
50 |
+
# # Clean text and remove non-essential lines
|
51 |
+
# cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
|
52 |
+
# cleaned_text = re.sub(r'Page \d+ of \d+', '', cleaned_text, flags=re.IGNORECASE)
|
53 |
+
# cleaned_text = re.sub(r'CropBox.*?MediaBox', '', cleaned_text, flags=re.IGNORECASE)
|
54 |
+
|
55 |
+
# # Keep only lines that look like transactions
|
56 |
+
# transaction_lines = []
|
57 |
+
# for line in cleaned_text.split('\n'):
|
58 |
+
# if re.match(r'^\d{4}-\d{2}-\d{2}', line): # Date pattern
|
59 |
+
# transaction_lines.append(line)
|
60 |
+
# elif '|' in line and any(x in line for x in ['Date', 'Amount', 'Balance']):
|
61 |
+
# transaction_lines.append(line)
|
62 |
+
|
63 |
+
# cleaned_text = "\n".join(transaction_lines)
|
64 |
+
# print(f"Cleaned text sample: {cleaned_text[:200]}...")
|
65 |
+
|
66 |
+
# # Try rule-based parsing first for structured data
|
67 |
+
# rule_based_data = rule_based_parser(cleaned_text)
|
68 |
+
# if rule_based_data["transactions"]:
|
69 |
+
# print("Using rule-based parser results")
|
70 |
+
# return rule_based_data
|
71 |
+
|
72 |
+
# # Fallback to LLM for unstructured data
|
73 |
+
# print("Falling back to LLM parsing")
|
74 |
+
# return llm_parser(cleaned_text)
|
75 |
+
|
76 |
+
# def llm_parser(text):
|
77 |
+
# """LLM parser for unstructured text"""
|
78 |
+
# # Craft precise prompt with strict JSON formatting instructions
|
79 |
+
# prompt = f"""
|
80 |
+
# <|system|>
|
81 |
+
# You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON.
|
82 |
+
# </s>
|
83 |
+
# <|user|>
|
84 |
+
# Extract all transactions from this bank statement with these exact fields:
|
85 |
+
# - date (format: YYYY-MM-DD)
|
86 |
+
# - description
|
87 |
+
# - amount (format: 0.00)
|
88 |
+
# - debit (format: 0.00)
|
89 |
+
# - credit (format: 0.00)
|
90 |
+
# - closing_balance (format: 0.00 or -0.00 for negative)
|
91 |
+
# - category
|
92 |
+
|
93 |
+
# Statement text:
|
94 |
+
# {text[:3000]} [truncated if too long]
|
95 |
+
|
96 |
+
# Return JSON with this exact structure:
|
97 |
+
# {{
|
98 |
+
# "transactions": [
|
99 |
+
# {{
|
100 |
+
# "date": "2025-05-08",
|
101 |
+
# "description": "Company XYZ Payroll",
|
102 |
+
# "amount": "8315.40",
|
103 |
+
# "debit": "0.00",
|
104 |
+
# "credit": "8315.40",
|
105 |
+
# "closing_balance": "38315.40",
|
106 |
+
# "category": "Salary"
|
107 |
+
# }}
|
108 |
+
# ]
|
109 |
+
# }}
|
110 |
+
|
111 |
+
# RULES:
|
112 |
+
# 1. Output ONLY the JSON object with no additional text
|
113 |
+
# 2. Keep amounts as strings with 2 decimal places
|
114 |
+
# 3. For missing values, use empty strings
|
115 |
+
# 4. Convert negative amounts to format "-123.45"
|
116 |
+
# 5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc
|
117 |
+
# </s>
|
118 |
+
# <|assistant|>
|
119 |
+
# """
|
120 |
+
|
121 |
+
# try:
|
122 |
+
# # Call LLM via Hugging Face Inference API
|
123 |
+
# response = client.text_generation(
|
124 |
+
# prompt,
|
125 |
+
# max_new_tokens=2000,
|
126 |
+
# temperature=0.01,
|
127 |
+
# stop=["</s>"] # Updated to 'stop' parameter
|
128 |
+
# )
|
129 |
+
# print(f"LLM Response: {response}")
|
130 |
+
|
131 |
+
# # Validate and clean JSON response
|
132 |
+
# response = response.strip()
|
133 |
+
# if not response.startswith('{'):
|
134 |
+
# # Find the first { and last } to extract JSON
|
135 |
+
# start_idx = response.find('{')
|
136 |
+
# end_idx = response.rfind('}')
|
137 |
+
# if start_idx != -1 and end_idx != -1:
|
138 |
+
# response = response[start_idx:end_idx+1]
|
139 |
+
|
140 |
+
# # Parse JSON and validate structure
|
141 |
+
# data = json.loads(response)
|
142 |
+
# if "transactions" not in data:
|
143 |
+
# raise ValueError("Missing 'transactions' key in JSON")
|
144 |
+
|
145 |
+
# return data
|
146 |
+
# except Exception as e:
|
147 |
+
# print(f"LLM Error: {str(e)}")
|
148 |
+
# return {"transactions": []}
|
149 |
+
|
150 |
+
# def rule_based_parser(text):
|
151 |
+
# """Enhanced fallback parser for structured tables"""
|
152 |
+
# lines = [line.strip() for line in text.split('\n') if line.strip()]
|
153 |
+
|
154 |
+
# # Find header line - more flexible detection
|
155 |
+
# header_index = None
|
156 |
+
# header_patterns = [
|
157 |
+
# r'Date\b', r'Description\b', r'Amount\b',
|
158 |
+
# r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
|
159 |
+
# ]
|
160 |
+
|
161 |
+
# for i, line in enumerate(lines):
|
162 |
+
# if any(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
|
163 |
+
# header_index = i
|
164 |
+
# break
|
165 |
+
|
166 |
+
# if header_index is None:
|
167 |
+
# return {"transactions": []}
|
168 |
+
|
169 |
+
# data_lines = lines[header_index + 1:]
|
170 |
+
# transactions = []
|
171 |
+
|
172 |
+
# for line in data_lines:
|
173 |
+
# # Handle both pipe-delimited and space-delimited formats
|
174 |
+
# if '|' in line:
|
175 |
+
# parts = [p.strip() for p in line.split('|') if p.strip()]
|
176 |
+
# else:
|
177 |
+
# # Space-delimited format - split while preserving multi-word descriptions
|
178 |
+
# parts = []
|
179 |
+
# current = ""
|
180 |
+
# in_description = False
|
181 |
+
# for char in line:
|
182 |
+
# if char == ' ' and not in_description:
|
183 |
+
# if current:
|
184 |
+
# parts.append(current)
|
185 |
+
# current = ""
|
186 |
+
# # After date field, we're in description
|
187 |
+
# if len(parts) == 1:
|
188 |
+
# in_description = True
|
189 |
+
# else:
|
190 |
+
# current += char
|
191 |
+
# if current:
|
192 |
+
# parts.append(current)
|
193 |
+
|
194 |
+
# if len(parts) < 7:
|
195 |
+
# continue
|
196 |
+
|
197 |
+
# try:
|
198 |
+
# transactions.append({
|
199 |
+
# "date": parts[0],
|
200 |
+
# "description": parts[1],
|
201 |
+
# "amount": format_number(parts[2]),
|
202 |
+
# "debit": format_number(parts[3]),
|
203 |
+
# "credit": format_number(parts[4]),
|
204 |
+
# "closing_balance": format_number(parts[5]),
|
205 |
+
# "category": parts[6]
|
206 |
+
# })
|
207 |
+
# except Exception as e:
|
208 |
+
# print(f"Error parsing line: {str(e)}")
|
209 |
+
|
210 |
+
# return {"transactions": transactions}
|
211 |
+
|
212 |
+
# def format_number(value):
|
213 |
+
# """Format numeric values consistently"""
|
214 |
+
# if not value:
|
215 |
+
# return "0.00"
|
216 |
+
|
217 |
+
# # Clean numeric values
|
218 |
+
# value = value.replace(',', '').replace('$', '').strip()
|
219 |
+
|
220 |
+
# # Handle negative numbers in parentheses
|
221 |
+
# if '(' in value and ')' in value:
|
222 |
+
# value = '-' + value.replace('(', '').replace(')', '')
|
223 |
+
|
224 |
+
# # Standardize decimal format
|
225 |
+
# if '.' not in value:
|
226 |
+
# value += '.00'
|
227 |
+
|
228 |
+
# # Ensure two decimal places
|
229 |
+
# try:
|
230 |
+
# return f"{float(value):.2f}"
|
231 |
+
# except:
|
232 |
+
# return value
|
233 |
+
|
234 |
+
# def process_file(file, is_scanned):
|
235 |
+
# """Main processing function"""
|
236 |
+
# if not file:
|
237 |
+
# return pd.DataFrame(columns=[
|
238 |
+
# "Date", "Description", "Amount", "Debit",
|
239 |
+
# "Credit", "Closing Balance", "Category"
|
240 |
+
# ])
|
241 |
+
|
242 |
+
# file_path = file.name
|
243 |
+
# file_ext = os.path.splitext(file_path)[1].lower()
|
244 |
+
|
245 |
+
# try:
|
246 |
+
# if file_ext == '.xlsx':
|
247 |
+
# text = extract_excel_data(file_path)
|
248 |
+
# elif file_ext == '.pdf':
|
249 |
+
# text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
|
250 |
+
# else:
|
251 |
+
# return pd.DataFrame(columns=[
|
252 |
+
# "Date", "Description", "Amount", "Debit",
|
253 |
+
# "Credit", "Closing Balance", "Category"
|
254 |
+
# ])
|
255 |
+
|
256 |
+
# parsed_data = parse_bank_statement(text)
|
257 |
+
# df = pd.DataFrame(parsed_data["transactions"])
|
258 |
+
|
259 |
+
# # Ensure all required columns exist
|
260 |
+
# required_cols = ["date", "description", "amount", "debit",
|
261 |
+
# "credit", "closing_balance", "category"]
|
262 |
+
# for col in required_cols:
|
263 |
+
# if col not in df.columns:
|
264 |
+
# df[col] = ""
|
265 |
+
|
266 |
+
# # Format columns properly
|
267 |
+
# df.columns = ["Date", "Description", "Amount", "Debit",
|
268 |
+
# "Credit", "Closing Balance", "Category"]
|
269 |
+
# return df
|
270 |
+
|
271 |
+
# except Exception as e:
|
272 |
+
# print(f"Processing error: {str(e)}")
|
273 |
+
# # Return empty DataFrame with correct columns on error
|
274 |
+
# return pd.DataFrame(columns=[
|
275 |
+
# "Date", "Description", "Amount", "Debit",
|
276 |
+
# "Credit", "Closing Balance", "Category"
|
277 |
+
# ])
|
278 |
+
|
279 |
+
# # Gradio Interface
|
280 |
+
# interface = gr.Interface(
|
281 |
+
# fn=process_file,
|
282 |
+
# inputs=[
|
283 |
+
# gr.File(label="Upload Bank Statement (PDF/Excel)"),
|
284 |
+
# gr.Checkbox(label="Is Scanned PDF? (Use OCR)")
|
285 |
+
# ],
|
286 |
+
# outputs=gr.Dataframe(
|
287 |
+
# label="Parsed Transactions",
|
288 |
+
# headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
|
289 |
+
# datatype=["date", "str", "number", "number", "number", "number", "str"]
|
290 |
+
# ),
|
291 |
+
# title="AI Bank Statement Parser",
|
292 |
+
# description="Extract structured transaction data from PDF/Excel bank statements",
|
293 |
+
# allow_flagging="never"
|
294 |
+
# )
|
295 |
+
|
296 |
+
# if __name__ == "__main__":
|
297 |
+
# interface.launch()
|
298 |
+
|
299 |
import os
|
300 |
import re
|
301 |
import json
|
|
|
343 |
text += pytesseract.image_to_string(image) + "\n"
|
344 |
return text
|
345 |
|
346 |
+
def parse_bank_statement(text, file_type):
|
347 |
"""Parse bank statement using LLM with fallback to rule-based parser"""
|
348 |
+
# Clean text differently based on file type
|
349 |
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
|
350 |
+
|
351 |
+
if file_type == 'pdf':
|
352 |
+
# PDF-specific cleaning
|
353 |
+
cleaned_text = re.sub(r'Page \d+ of \d+', '', cleaned_text, flags=re.IGNORECASE)
|
354 |
+
cleaned_text = re.sub(r'CropBox.*?MediaBox', '', cleaned_text, flags=re.IGNORECASE)
|
355 |
+
|
356 |
+
# Keep only lines that look like transactions
|
357 |
+
transaction_lines = []
|
358 |
+
for line in cleaned_text.split('\n'):
|
359 |
+
if re.match(r'^\d{4}-\d{2}-\d{2}', line): # Date pattern
|
360 |
+
transaction_lines.append(line)
|
361 |
+
elif '|' in line and any(x in line for x in ['Date', 'Amount', 'Balance']):
|
362 |
+
transaction_lines.append(line)
|
363 |
+
|
364 |
+
cleaned_text = "\n".join(transaction_lines)
|
365 |
+
|
366 |
print(f"Cleaned text sample: {cleaned_text[:200]}...")
|
367 |
|
368 |
# Try rule-based parsing first for structured data
|
|
|
460 |
r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
|
461 |
]
|
462 |
|
463 |
+
# First try: Look for a full header line
|
464 |
for i, line in enumerate(lines):
|
465 |
+
if all(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns[:3]):
|
466 |
header_index = i
|
467 |
break
|
468 |
|
469 |
+
# Second try: Look for any header indicators
|
470 |
+
if header_index is None:
|
471 |
+
for i, line in enumerate(lines):
|
472 |
+
if any(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
|
473 |
+
header_index = i
|
474 |
+
break
|
475 |
+
|
476 |
+
# Third try: Look for pipe-delimited headers
|
477 |
+
if header_index is None:
|
478 |
+
for i, line in enumerate(lines):
|
479 |
+
if '|' in line and any(p in line for p in ['Date', 'Amount', 'Balance']):
|
480 |
+
header_index = i
|
481 |
+
break
|
482 |
+
|
483 |
if header_index is None:
|
484 |
return {"transactions": []}
|
485 |
|
|
|
491 |
if '|' in line:
|
492 |
parts = [p.strip() for p in line.split('|') if p.strip()]
|
493 |
else:
|
494 |
+
# Space-delimited format - split by 2+ spaces
|
495 |
+
parts = re.split(r'\s{2,}', line)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
|
497 |
+
# Skip lines that don't have enough parts
|
498 |
if len(parts) < 7:
|
499 |
continue
|
500 |
|
501 |
try:
|
502 |
+
# Handle transaction date validation
|
503 |
+
if not re.match(r'\d{4}-\d{2}-\d{2}', parts[0]):
|
504 |
+
continue
|
505 |
+
|
506 |
transactions.append({
|
507 |
"date": parts[0],
|
508 |
"description": parts[1],
|
|
|
519 |
|
520 |
def format_number(value):
|
521 |
"""Format numeric values consistently"""
|
522 |
+
if not value or str(value).lower() in ['nan', 'nat']:
|
523 |
return "0.00"
|
524 |
|
525 |
+
# If it's already a number, format directly
|
526 |
+
if isinstance(value, (int, float)):
|
527 |
+
return f"{value:.2f}"
|
528 |
+
|
529 |
+
# Clean string values
|
530 |
+
value = str(value).replace(',', '').replace('$', '').strip()
|
531 |
|
532 |
# Handle negative numbers in parentheses
|
533 |
if '(' in value and ')' in value:
|
534 |
value = '-' + value.replace('(', '').replace(')', '')
|
535 |
|
536 |
+
# Handle empty values
|
537 |
+
if not value:
|
538 |
+
return "0.00"
|
539 |
+
|
540 |
# Standardize decimal format
|
541 |
if '.' not in value:
|
542 |
value += '.00'
|
543 |
|
544 |
# Ensure two decimal places
|
545 |
try:
|
546 |
+
num_value = float(value)
|
547 |
+
return f"{num_value:.2f}"
|
548 |
+
except ValueError:
|
549 |
+
# If we can't convert to float, return original but clean it
|
550 |
+
return value.split('.')[0] + '.' + value.split('.')[1][:2].ljust(2, '0')
|
551 |
|
552 |
def process_file(file, is_scanned):
|
553 |
"""Main processing function"""
|
554 |
if not file:
|
555 |
+
return empty_df()
|
|
|
|
|
|
|
556 |
|
557 |
file_path = file.name
|
558 |
file_ext = os.path.splitext(file_path)[1].lower()
|
559 |
|
560 |
try:
|
561 |
if file_ext == '.xlsx':
|
562 |
+
# Directly process Excel files without text conversion
|
563 |
+
df = pd.read_excel(file_path, engine='openpyxl')
|
564 |
+
|
565 |
+
# Normalize column names
|
566 |
+
df.columns = df.columns.str.strip().str.lower()
|
567 |
+
|
568 |
+
# Create mapping to expected columns
|
569 |
+
col_mapping = {
|
570 |
+
'date': 'date',
|
571 |
+
'description': 'description',
|
572 |
+
'amount': 'amount',
|
573 |
+
'debit': 'debit',
|
574 |
+
'credit': 'credit',
|
575 |
+
'closing balance': 'closing_balance',
|
576 |
+
'closing': 'closing_balance',
|
577 |
+
'balance': 'closing_balance',
|
578 |
+
'category': 'category'
|
579 |
+
}
|
580 |
+
|
581 |
+
# Create output DataFrame with required columns
|
582 |
+
output_df = pd.DataFrame()
|
583 |
+
for col in ['date', 'description', 'amount', 'debit', 'credit', 'closing_balance', 'category']:
|
584 |
+
if col in df.columns:
|
585 |
+
output_df[col] = df[col]
|
586 |
+
elif any(alias in col_mapping and col_mapping[alias] == col for alias in df.columns):
|
587 |
+
# Find alias
|
588 |
+
for alias in df.columns:
|
589 |
+
if alias in col_mapping and col_mapping[alias] == col:
|
590 |
+
output_df[col] = df[alias]
|
591 |
+
break
|
592 |
+
else:
|
593 |
+
output_df[col] = ""
|
594 |
+
|
595 |
+
# Format numeric columns
|
596 |
+
for col in ['amount', 'debit', 'credit', 'closing_balance']:
|
597 |
+
output_df[col] = output_df[col].apply(format_number)
|
598 |
+
|
599 |
+
# Rename columns for display
|
600 |
+
output_df.columns = ["Date", "Description", "Amount", "Debit",
|
601 |
+
"Credit", "Closing Balance", "Category"]
|
602 |
+
return output_df
|
603 |
+
|
604 |
elif file_ext == '.pdf':
|
605 |
text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
|
606 |
+
parsed_data = parse_bank_statement(text, 'pdf')
|
607 |
+
df = pd.DataFrame(parsed_data["transactions"])
|
608 |
+
|
609 |
+
# Ensure all required columns exist
|
610 |
+
required_cols = ["date", "description", "amount", "debit",
|
611 |
+
"credit", "closing_balance", "category"]
|
612 |
+
for col in required_cols:
|
613 |
+
if col not in df.columns:
|
614 |
+
df[col] = ""
|
615 |
+
|
616 |
+
# Format columns properly
|
617 |
+
df.columns = ["Date", "Description", "Amount", "Debit",
|
618 |
+
"Credit", "Closing Balance", "Category"]
|
619 |
+
return df
|
620 |
|
621 |
+
else:
|
622 |
+
return empty_df()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
623 |
|
624 |
except Exception as e:
|
625 |
print(f"Processing error: {str(e)}")
|
626 |
+
return empty_df()
|
627 |
+
|
628 |
+
def empty_df():
|
629 |
+
"""Return empty DataFrame with correct columns"""
|
630 |
+
return pd.DataFrame(columns=["Date", "Description", "Amount", "Debit",
|
631 |
+
"Credit", "Closing Balance", "Category"])
|
632 |
|
633 |
# Gradio Interface
|
634 |
interface = gr.Interface(
|