# import os # import re # import json # import gradio as gr # import pandas as pd # import pdfplumber # import pytesseract # from pdf2image import convert_from_path # from huggingface_hub import InferenceClient # # Initialize with reliable free model # hf_token = os.getenv("HF_TOKEN") # client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token) # def extract_excel_data(file_path): # """Extract text from Excel file""" # df = pd.read_excel(file_path, engine='openpyxl') # return df.to_string(index=False) # def extract_text_from_pdf(pdf_path, is_scanned=False): # """Extract text from PDF with fallback OCR""" # try: # # Try native PDF extraction first # with pdfplumber.open(pdf_path) as pdf: # text = "" # for page in pdf.pages: # # Extract tables first for structured data # tables = page.extract_tables() # for table in tables: # for row in table: # text += " | ".join(str(cell) for cell in row) + "\n" # text += "\n" # # Extract text for unstructured data # page_text = page.extract_text() # if page_text: # text += page_text + "\n\n" # return text # except Exception as e: # print(f"Native PDF extraction failed: {str(e)}") # # Fallback to OCR for scanned PDFs # images = convert_from_path(pdf_path, dpi=200) # text = "" # for image in images: # text += pytesseract.image_to_string(image) + "\n" # return text # def parse_bank_statement(text): # """Parse bank statement using LLM with fallback to rule-based parser""" # # Clean text and remove non-essential lines # cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text) # cleaned_text = re.sub(r'Page \d+ of \d+', '', cleaned_text, flags=re.IGNORECASE) # cleaned_text = re.sub(r'CropBox.*?MediaBox', '', cleaned_text, flags=re.IGNORECASE) # # Keep only lines that look like transactions # transaction_lines = [] # for line in cleaned_text.split('\n'): # if re.match(r'^\d{4}-\d{2}-\d{2}', line): # Date pattern # transaction_lines.append(line) # elif '|' in line and any(x in line for x in ['Date', 'Amount', 'Balance']): # transaction_lines.append(line) # cleaned_text = "\n".join(transaction_lines) # print(f"Cleaned text sample: {cleaned_text[:200]}...") # # Try rule-based parsing first for structured data # rule_based_data = rule_based_parser(cleaned_text) # if rule_based_data["transactions"]: # print("Using rule-based parser results") # return rule_based_data # # Fallback to LLM for unstructured data # print("Falling back to LLM parsing") # return llm_parser(cleaned_text) # def llm_parser(text): # """LLM parser for unstructured text""" # # Craft precise prompt with strict JSON formatting instructions # prompt = f""" # <|system|> # You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON. # # <|user|> # Extract all transactions from this bank statement with these exact fields: # - date (format: YYYY-MM-DD) # - description # - amount (format: 0.00) # - debit (format: 0.00) # - credit (format: 0.00) # - closing_balance (format: 0.00 or -0.00 for negative) # - category # Statement text: # {text[:3000]} [truncated if too long] # Return JSON with this exact structure: # {{ # "transactions": [ # {{ # "date": "2025-05-08", # "description": "Company XYZ Payroll", # "amount": "8315.40", # "debit": "0.00", # "credit": "8315.40", # "closing_balance": "38315.40", # "category": "Salary" # }} # ] # }} # RULES: # 1. Output ONLY the JSON object with no additional text # 2. Keep amounts as strings with 2 decimal places # 3. For missing values, use empty strings # 4. Convert negative amounts to format "-123.45" # 5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc # # <|assistant|> # """ # try: # # Call LLM via Hugging Face Inference API # response = client.text_generation( # prompt, # max_new_tokens=2000, # temperature=0.01, # stop=[""] # Updated to 'stop' parameter # ) # print(f"LLM Response: {response}") # # Validate and clean JSON response # response = response.strip() # if not response.startswith('{'): # # Find the first { and last } to extract JSON # start_idx = response.find('{') # end_idx = response.rfind('}') # if start_idx != -1 and end_idx != -1: # response = response[start_idx:end_idx+1] # # Parse JSON and validate structure # data = json.loads(response) # if "transactions" not in data: # raise ValueError("Missing 'transactions' key in JSON") # return data # except Exception as e: # print(f"LLM Error: {str(e)}") # return {"transactions": []} # def rule_based_parser(text): # """Enhanced fallback parser for structured tables""" # lines = [line.strip() for line in text.split('\n') if line.strip()] # # Find header line - more flexible detection # header_index = None # header_patterns = [ # r'Date\b', r'Description\b', r'Amount\b', # r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b' # ] # for i, line in enumerate(lines): # if any(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns): # header_index = i # break # if header_index is None: # return {"transactions": []} # data_lines = lines[header_index + 1:] # transactions = [] # for line in data_lines: # # Handle both pipe-delimited and space-delimited formats # if '|' in line: # parts = [p.strip() for p in line.split('|') if p.strip()] # else: # # Space-delimited format - split while preserving multi-word descriptions # parts = [] # current = "" # in_description = False # for char in line: # if char == ' ' and not in_description: # if current: # parts.append(current) # current = "" # # After date field, we're in description # if len(parts) == 1: # in_description = True # else: # current += char # if current: # parts.append(current) # if len(parts) < 7: # continue # try: # transactions.append({ # "date": parts[0], # "description": parts[1], # "amount": format_number(parts[2]), # "debit": format_number(parts[3]), # "credit": format_number(parts[4]), # "closing_balance": format_number(parts[5]), # "category": parts[6] # }) # except Exception as e: # print(f"Error parsing line: {str(e)}") # return {"transactions": transactions} # def format_number(value): # """Format numeric values consistently""" # if not value: # return "0.00" # # Clean numeric values # value = value.replace(',', '').replace('$', '').strip() # # Handle negative numbers in parentheses # if '(' in value and ')' in value: # value = '-' + value.replace('(', '').replace(')', '') # # Standardize decimal format # if '.' not in value: # value += '.00' # # Ensure two decimal places # try: # return f"{float(value):.2f}" # except: # return value # def process_file(file, is_scanned): # """Main processing function""" # if not file: # return pd.DataFrame(columns=[ # "Date", "Description", "Amount", "Debit", # "Credit", "Closing Balance", "Category" # ]) # file_path = file.name # file_ext = os.path.splitext(file_path)[1].lower() # try: # if file_ext == '.xlsx': # text = extract_excel_data(file_path) # elif file_ext == '.pdf': # text = extract_text_from_pdf(file_path, is_scanned=is_scanned) # else: # return pd.DataFrame(columns=[ # "Date", "Description", "Amount", "Debit", # "Credit", "Closing Balance", "Category" # ]) # parsed_data = parse_bank_statement(text) # df = pd.DataFrame(parsed_data["transactions"]) # # Ensure all required columns exist # required_cols = ["date", "description", "amount", "debit", # "credit", "closing_balance", "category"] # for col in required_cols: # if col not in df.columns: # df[col] = "" # # Format columns properly # df.columns = ["Date", "Description", "Amount", "Debit", # "Credit", "Closing Balance", "Category"] # return df # except Exception as e: # print(f"Processing error: {str(e)}") # # Return empty DataFrame with correct columns on error # return pd.DataFrame(columns=[ # "Date", "Description", "Amount", "Debit", # "Credit", "Closing Balance", "Category" # ]) # # Gradio Interface # interface = gr.Interface( # fn=process_file, # inputs=[ # gr.File(label="Upload Bank Statement (PDF/Excel)"), # gr.Checkbox(label="Is Scanned PDF? (Use OCR)") # ], # outputs=gr.Dataframe( # label="Parsed Transactions", # headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"], # datatype=["date", "str", "number", "number", "number", "number", "str"] # ), # title="AI Bank Statement Parser", # description="Extract structured transaction data from PDF/Excel bank statements", # allow_flagging="never" # ) # if __name__ == "__main__": # interface.launch() import os import re import json import gradio as gr import pandas as pd import pdfplumber import pytesseract from pdf2image import convert_from_path from huggingface_hub import InferenceClient # Initialize with reliable free model hf_token = os.getenv("HF_TOKEN") client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token) def extract_excel_data(file_path): """Extract text from Excel file""" df = pd.read_excel(file_path, engine='openpyxl') return df.to_string(index=False) def extract_text_from_pdf(pdf_path, is_scanned=False): """Extract text from PDF with fallback OCR""" try: # Try native PDF extraction first with pdfplumber.open(pdf_path) as pdf: text = "" for page in pdf.pages: # Extract tables first for structured data tables = page.extract_tables() for table in tables: for row in table: text += " | ".join(str(cell) for cell in row) + "\n" text += "\n" # Extract text for unstructured data page_text = page.extract_text() if page_text: text += page_text + "\n\n" return text except Exception as e: print(f"Native PDF extraction failed: {str(e)}") # Fallback to OCR for scanned PDFs images = convert_from_path(pdf_path, dpi=200) text = "" for image in images: text += pytesseract.image_to_string(image) + "\n" return text def parse_bank_statement(text, file_type): """Parse bank statement using LLM with fallback to rule-based parser""" # Clean text differently based on file type cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text) if file_type == 'pdf': # PDF-specific cleaning cleaned_text = re.sub(r'Page \d+ of \d+', '', cleaned_text, flags=re.IGNORECASE) cleaned_text = re.sub(r'CropBox.*?MediaBox', '', cleaned_text, flags=re.IGNORECASE) # Keep only lines that look like transactions transaction_lines = [] for line in cleaned_text.split('\n'): if re.match(r'^\d{4}-\d{2}-\d{2}', line): # Date pattern transaction_lines.append(line) elif '|' in line and any(x in line for x in ['Date', 'Amount', 'Balance']): transaction_lines.append(line) cleaned_text = "\n".join(transaction_lines) print(f"Cleaned text sample: {cleaned_text[:200]}...") # Try rule-based parsing first for structured data rule_based_data = rule_based_parser(cleaned_text) if rule_based_data["transactions"]: print("Using rule-based parser results") return rule_based_data # Fallback to LLM for unstructured data print("Falling back to LLM parsing") return llm_parser(cleaned_text) def llm_parser(text): """LLM parser for unstructured text""" # Craft precise prompt with strict JSON formatting instructions prompt = f""" <|system|> You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON. <|user|> Extract all transactions from this bank statement with these exact fields: - date (format: YYYY-MM-DD) - description - amount (format: 0.00) - debit (format: 0.00) - credit (format: 0.00) - closing_balance (format: 0.00 or -0.00 for negative) - category Statement text: {text[:3000]} [truncated if too long] Return JSON with this exact structure: {{ "transactions": [ {{ "date": "2025-05-08", "description": "Company XYZ Payroll", "amount": "8315.40", "debit": "0.00", "credit": "8315.40", "closing_balance": "38315.40", "category": "Salary" }} ] }} RULES: 1. Output ONLY the JSON object with no additional text 2. Keep amounts as strings with 2 decimal places 3. For missing values, use empty strings 4. Convert negative amounts to format "-123.45" 5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc <|assistant|> """ try: # Call LLM via Hugging Face Inference API response = client.text_generation( prompt, max_new_tokens=2000, temperature=0.01, stop=[""] # Updated to 'stop' parameter ) print(f"LLM Response: {response}") # Validate and clean JSON response response = response.strip() if not response.startswith('{'): # Find the first { and last } to extract JSON start_idx = response.find('{') end_idx = response.rfind('}') if start_idx != -1 and end_idx != -1: response = response[start_idx:end_idx+1] # Parse JSON and validate structure data = json.loads(response) if "transactions" not in data: raise ValueError("Missing 'transactions' key in JSON") return data except Exception as e: print(f"LLM Error: {str(e)}") return {"transactions": []} def rule_based_parser(text): """Enhanced fallback parser for structured tables""" lines = [line.strip() for line in text.split('\n') if line.strip()] # Find header line - more flexible detection header_index = None header_patterns = [ r'Date\b', r'Description\b', r'Amount\b', r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b' ] # First try: Look for a full header line for i, line in enumerate(lines): if all(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns[:3]): header_index = i break # Second try: Look for any header indicators if header_index is None: for i, line in enumerate(lines): if any(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns): header_index = i break # Third try: Look for pipe-delimited headers if header_index is None: for i, line in enumerate(lines): if '|' in line and any(p in line for p in ['Date', 'Amount', 'Balance']): header_index = i break if header_index is None: return {"transactions": []} data_lines = lines[header_index + 1:] transactions = [] for line in data_lines: # Handle both pipe-delimited and space-delimited formats if '|' in line: parts = [p.strip() for p in line.split('|') if p.strip()] else: # Space-delimited format - split by 2+ spaces parts = re.split(r'\s{2,}', line) # Skip lines that don't have enough parts if len(parts) < 7: continue try: # Handle transaction date validation if not re.match(r'\d{4}-\d{2}-\d{2}', parts[0]): continue transactions.append({ "date": parts[0], "description": parts[1], "amount": format_number(parts[2]), "debit": format_number(parts[3]), "credit": format_number(parts[4]), "closing_balance": format_number(parts[5]), "category": parts[6] }) except Exception as e: print(f"Error parsing line: {str(e)}") return {"transactions": transactions} def format_number(value): """Format numeric values consistently""" if not value or str(value).lower() in ['nan', 'nat']: return "0.00" # If it's already a number, format directly if isinstance(value, (int, float)): return f"{value:.2f}" # Clean string values value = str(value).replace(',', '').replace('$', '').strip() # Handle negative numbers in parentheses if '(' in value and ')' in value: value = '-' + value.replace('(', '').replace(')', '') # Handle empty values if not value: return "0.00" # Standardize decimal format if '.' not in value: value += '.00' # Ensure two decimal places try: num_value = float(value) return f"{num_value:.2f}" except ValueError: # If we can't convert to float, return original but clean it return value.split('.')[0] + '.' + value.split('.')[1][:2].ljust(2, '0') def process_file(file, is_scanned): """Main processing function""" if not file: return empty_df() file_path = file.name file_ext = os.path.splitext(file_path)[1].lower() try: if file_ext == '.xlsx': # Directly process Excel files without text conversion df = pd.read_excel(file_path, engine='openpyxl') # Normalize column names df.columns = df.columns.str.strip().str.lower() # Create mapping to expected columns col_mapping = { 'date': 'date', 'description': 'description', 'amount': 'amount', 'debit': 'debit', 'credit': 'credit', 'closing balance': 'closing_balance', 'closing': 'closing_balance', 'balance': 'closing_balance', 'category': 'category' } # Create output DataFrame with required columns output_df = pd.DataFrame() for col in ['date', 'description', 'amount', 'debit', 'credit', 'closing_balance', 'category']: if col in df.columns: output_df[col] = df[col] elif any(alias in col_mapping and col_mapping[alias] == col for alias in df.columns): # Find alias for alias in df.columns: if alias in col_mapping and col_mapping[alias] == col: output_df[col] = df[alias] break else: output_df[col] = "" # Format numeric columns for col in ['amount', 'debit', 'credit', 'closing_balance']: output_df[col] = output_df[col].apply(format_number) # Rename columns for display output_df.columns = ["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"] return output_df elif file_ext == '.pdf': text = extract_text_from_pdf(file_path, is_scanned=is_scanned) parsed_data = parse_bank_statement(text, 'pdf') df = pd.DataFrame(parsed_data["transactions"]) # Ensure all required columns exist required_cols = ["date", "description", "amount", "debit", "credit", "closing_balance", "category"] for col in required_cols: if col not in df.columns: df[col] = "" # Format columns properly df.columns = ["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"] return df else: return empty_df() except Exception as e: print(f"Processing error: {str(e)}") return empty_df() def empty_df(): """Return empty DataFrame with correct columns""" return pd.DataFrame(columns=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"]) # Gradio Interface interface = gr.Interface( fn=process_file, inputs=[ gr.File(label="Upload Bank Statement (PDF/Excel)"), gr.Checkbox(label="Is Scanned PDF? (Use OCR)") ], outputs=gr.Dataframe( label="Parsed Transactions", headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"], datatype=["date", "str", "number", "number", "number", "number", "str"] ), title="AI Bank Statement Parser", description="Extract structured transaction data from PDF/Excel bank statements", allow_flagging="never" ) if __name__ == "__main__": interface.launch()