File size: 8,824 Bytes
f330df4
27a375e
 
f330df4
27a375e
f330df4
 
ff610ff
27a375e
 
fd970b6
27a375e
fd970b6
f330df4
ff610ff
27a375e
ff610ff
27a375e
f330df4
 
27a375e
ff610ff
27a375e
f330df4
ff610ff
f330df4
ff610ff
 
 
 
27a375e
ff610ff
 
 
 
 
f330df4
 
27a375e
ff610ff
471f1d3
ff610ff
6255a6d
f330df4
6255a6d
 
 
 
 
 
 
 
 
 
 
 
52ebfdc
6255a6d
 
52ebfdc
6255a6d
15c9ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a375e
6255a6d
 
 
 
 
 
 
 
27a375e
6255a6d
27a375e
fd970b6
aca59c0
 
 
fd970b6
aca59c0
 
 
 
6255a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a375e
 
 
 
 
 
6255a6d
27a375e
ff610ff
6255a6d
27a375e
6255a6d
 
 
 
 
27a375e
6255a6d
27a375e
ff610ff
27a375e
6255a6d
 
 
 
 
 
 
27a375e
 
 
 
 
 
 
6255a6d
 
 
 
 
 
 
27a375e
 
ff610ff
 
 
27a375e
 
aca59c0
 
 
 
27a375e
ff610ff
 
27a375e
 
ff610ff
f330df4
aca59c0
 
6255a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca59c0
 
f330df4
27a375e
 
4cfc47d
 
 
 
27a375e
f330df4
ff610ff
 
27a375e
 
 
 
 
 
4cfc47d
 
 
 
27a375e
 
 
4cfc47d
 
 
 
 
 
 
 
6255a6d
4cfc47d
 
27a375e
4cfc47d
27a375e
4cfc47d
 
 
 
 
 
f330df4
27a375e
f330df4
 
 
27a375e
 
f330df4
27a375e
 
6255a6d
 
27a375e
 
6255a6d
ff610ff
f330df4
 
ff610ff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import re
import json
import gradio as gr
import pandas as pd
import pdfplumber
import pytesseract
from pdf2image import convert_from_path
from huggingface_hub import InferenceClient

# Initialize with a reliable free model that supports text-generation
hf_token = os.getenv("HF_TOKEN")
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token)

def extract_excel_data(file_path):
    """Extract text from Excel file"""
    df = pd.read_excel(file_path, engine='openpyxl')
    return df.to_string(index=False)

def extract_text_from_pdf(pdf_path, is_scanned=False):
    """Extract text from PDF with fallback OCR"""
    try:
        # Try native PDF extraction first
        with pdfplumber.open(pdf_path) as pdf:
            text = ""
            for page in pdf.pages:
                text += page.extract_text() + "\n"
            return text
    except Exception as e:
        print(f"Native PDF extraction failed: {str(e)}")
        # Fallback to OCR for scanned PDFs
        images = convert_from_path(pdf_path, dpi=200)
        text = ""
        for image in images:
            text += pytesseract.image_to_string(image) + "\n"
        return text

def parse_bank_statement(text):
    """Parse bank statement using LLM with fallback to rule-based parser"""
    cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
    print(f"Original text sample: {cleaned_text[:200]}...")
    
    # Craft precise prompt with strict JSON formatting instructions
    prompt = f"""
<|system|>
You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON.
</s>
<|user|>
Extract all transactions from this bank statement with these exact fields:
- date (format: YYYY-MM-DD)
- description
- amount (format: 0.00)
- debit (format: 0.00)
- credit (format: 0.00)
- closing_balance (format: 0.00 or -0.00 for negative)
- category

Statement text:
{cleaned_text[:3000]}  [truncated if too long]

Return JSON with this exact structure:
{{
  "transactions": [
    {{
      "date": "2025-05-08",
      "description": "Company XYZ Payroll",
      "amount": "8315.40",
      "debit": "0.00",
      "credit": "8315.40",
      "closing_balance": "38315.40",
      "category": "Salary"
    }},
    {{
      "date": "2025-05-19",
      "description": "Whole Foods",
      "amount": "142.21",
      "debit": "142.21",
      "credit": "0.00",
      "closing_balance": "38173.19",
      "category": "Groceries"
    }}
  ]
}}

RULES:
1. Output ONLY the JSON object with no additional text
2. Keep amounts as strings with 2 decimal places
3. For missing values, use empty strings
4. Convert negative amounts to format "-123.45"
5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc
</s>
<|assistant|>
"""
    
    try:
        # Call LLM via Hugging Face Inference API
        response = client.text_generation(
            prompt,
            max_new_tokens=2000,
            temperature=0.01,
            stop_sequences=["</s>"]
        )
        print(f"LLM Response: {response}")
        
        # Validate and clean JSON response
        response = response.strip()
        if not response.startswith('{'):
            # Find the first { and last } to extract JSON
            start_idx = response.find('{')
            end_idx = response.rfind('}')
            if start_idx != -1 and end_idx != -1:
                response = response[start_idx:end_idx+1]
        
        # Parse JSON and validate structure
        data = json.loads(response)
        if "transactions" not in data:
            raise ValueError("Missing 'transactions' key in JSON")
            
        return data
    except Exception as e:
        print(f"LLM Error: {str(e)}")
        # Fallback to rule-based parser
        return rule_based_parser(cleaned_text)

def rule_based_parser(text):
    """Enhanced fallback parser for structured tables"""
    lines = [line.strip() for line in text.split('\n') if line.strip()]
    
    # Find header line - more flexible detection
    header_index = None
    header_patterns = [
        r'Date\b', r'Description\b', r'Amount\b', 
        r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
    ]
    
    for i, line in enumerate(lines):
        if all(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
            header_index = i
            break
    
    if header_index is None:
        # Try pipe-delimited format as fallback
        for i, line in enumerate(lines):
            if '|' in line and any(p in line for p in ['Date', 'Amount', 'Balance']):
                header_index = i
                break
    
    if header_index is None or header_index + 1 >= len(lines):
        return {"transactions": []}
    
    data_lines = lines[header_index + 1:]
    transactions = []
    
    for line in data_lines:
        # Handle both pipe-delimited and space-aligned formats
        if '|' in line:
            parts = [p.strip() for p in line.split('|') if p.strip()]
        else:
            # Space-aligned format - split by 2+ spaces
            parts = re.split(r'\s{2,}', line)
        
        if len(parts) < 7:
            continue
            
        try:
            transactions.append({
                "date": parts[0],
                "description": parts[1],
                "amount": format_number(parts[2]),
                "debit": format_number(parts[3]),
                "credit": format_number(parts[4]),
                "closing_balance": format_number(parts[5]),
                "category": parts[6]
            })
        except Exception as e:
            print(f"Error parsing line: {str(e)}")
    
    return {"transactions": transactions}

def format_number(value):
    """Format numeric values consistently"""
    if not value:
        return "0.00"
        
    # Clean numeric values
    value = value.replace(',', '').replace('$', '').strip()
    
    # Handle negative numbers in parentheses
    if '(' in value and ')' in value:
        value = '-' + value.replace('(', '').replace(')', '')
    
    # Standardize decimal format
    if '.' not in value:
        value += '.00'
    
    # Ensure two decimal places
    parts = value.split('.')
    if len(parts) == 2:
        integer = parts[0].lstrip('0') or '0'
        decimal = parts[1][:2].ljust(2, '0')
        value = f"{integer}.{decimal}"
    
    # Handle negative signs
    if value.startswith('-'):
        return f"-{value[1:].lstrip('0')}" if value[1:] != '0.00' else '0.00'
    return value

def process_file(file, is_scanned):
    """Main processing function"""
    if not file:
        return pd.DataFrame(columns=[
            "Date", "Description", "Amount", "Debit", 
            "Credit", "Closing Balance", "Category"
        ])
    
    file_path = file.name
    file_ext = os.path.splitext(file_path)[1].lower()
    
    try:
        if file_ext == '.xlsx':
            text = extract_excel_data(file_path)
        elif file_ext == '.pdf':
            text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
        else:
            return pd.DataFrame(columns=[
                "Date", "Description", "Amount", "Debit", 
                "Credit", "Closing Balance", "Category"
            ])
        
        parsed_data = parse_bank_statement(text)
        df = pd.DataFrame(parsed_data["transactions"])
        
        # Ensure all required columns exist
        required_cols = ["date", "description", "amount", "debit", 
                        "credit", "closing_balance", "category"]
        for col in required_cols:
            if col not in df.columns:
                df[col] = ""
                
        # Format columns properly
        df.columns = ["Date", "Description", "Amount", "Debit", 
                     "Credit", "Closing Balance", "Category"]
        return df
    
    except Exception as e:
        print(f"Processing error: {str(e)}")
        # Return empty DataFrame with correct columns on error
        return pd.DataFrame(columns=[
            "Date", "Description", "Amount", "Debit", 
            "Credit", "Closing Balance", "Category"
        ])

# Gradio Interface
interface = gr.Interface(
    fn=process_file,
    inputs=[
        gr.File(label="Upload Bank Statement (PDF/Excel)"),
        gr.Checkbox(label="Is Scanned PDF? (Use OCR)")
    ],
    outputs=gr.Dataframe(
        label="Parsed Transactions",
        headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
        datatype=["date", "str", "number", "number", "number", "number", "str"]
    ),
    title="AI Bank Statement Parser",
    description="Extract structured transaction data from PDF/Excel bank statements",
    allow_flagging="never"
)

if __name__ == "__main__":
    interface.launch()