Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,157 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
|
|
3 |
import pdfplumber
|
4 |
import pytesseract
|
5 |
-
from PIL import Image
|
6 |
from pdf2image import convert_from_path
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
# For Excel files
|
12 |
def extract_excel_data(file_path):
|
|
|
13 |
df = pd.read_excel(file_path, engine='openpyxl')
|
14 |
-
return df.to_string()
|
15 |
|
16 |
-
# For PDF files with fallback OCR
|
17 |
def extract_text_from_pdf(pdf_path, is_scanned=False):
|
|
|
18 |
try:
|
19 |
-
#
|
20 |
with pdfplumber.open(pdf_path) as pdf:
|
21 |
text = ""
|
22 |
for page in pdf.pages:
|
23 |
text += page.extract_text() + "\n"
|
24 |
return text
|
25 |
except Exception as e:
|
26 |
-
# Fallback to OCR if PDF is invalid
|
27 |
print(f"Native PDF extraction failed: {str(e)}")
|
28 |
-
|
29 |
images = convert_from_path(pdf_path, dpi=200)
|
30 |
text = ""
|
31 |
for image in images:
|
32 |
text += pytesseract.image_to_string(image) + "\n"
|
33 |
return text
|
34 |
|
35 |
-
# Prompt engineering for structured extraction
|
36 |
def parse_bank_statement(text):
|
37 |
-
|
38 |
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
|
39 |
|
|
|
40 |
prompt = f"""
|
41 |
-
|
42 |
-
- Transaction Date
|
43 |
-
- Description / Merchant
|
44 |
-
- Amount
|
45 |
-
- Debit / Credit
|
46 |
-
- Closing Balance
|
47 |
-
- Expense Type (if available)
|
48 |
|
49 |
-
|
50 |
-
["date", "description", "amount", "debit_credit", "closing_balance", "expense_type"].
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
"closing_balance": "1200.00",
|
61 |
-
"expense_type": "Food"
|
62 |
-
}}
|
63 |
-
]
|
64 |
-
}}
|
65 |
|
66 |
-
|
67 |
-
{cleaned_text}
|
68 |
-
"""
|
69 |
-
|
70 |
-
# Simulate LLM response with deterministic parsing for demo
|
71 |
-
# Replace this with actual LLM inference in production
|
72 |
-
return simulate_llm_parsing(cleaned_text)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
try:
|
88 |
transactions.append({
|
89 |
-
"date":
|
90 |
-
"description":
|
91 |
-
"amount":
|
92 |
-
"
|
93 |
-
"
|
94 |
-
"
|
|
|
95 |
})
|
96 |
except Exception as e:
|
97 |
-
print(f"Error parsing line
|
98 |
-
|
99 |
-
|
100 |
return {"transactions": transactions}
|
101 |
|
102 |
-
# Main function
|
103 |
def process_file(file, is_scanned):
|
|
|
|
|
|
|
|
|
104 |
file_path = file.name
|
105 |
file_ext = os.path.splitext(file_path)[1].lower()
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
119 |
|
120 |
-
# Gradio
|
121 |
interface = gr.Interface(
|
122 |
fn=process_file,
|
123 |
inputs=[
|
124 |
-
gr.File(label="Upload PDF/Excel"),
|
125 |
-
gr.Checkbox(label="Is Scanned PDF?")
|
126 |
],
|
127 |
-
outputs=gr.Dataframe(
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
130 |
allow_flagging="never"
|
131 |
)
|
132 |
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
import pdfplumber
|
7 |
import pytesseract
|
|
|
8 |
from pdf2image import convert_from_path
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
+
|
11 |
+
# Initialize Hugging Face Inference Client
|
12 |
+
hf_token = os.getenv("HF_TOKEN")
|
13 |
+
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=hf_token)
|
14 |
|
|
|
15 |
def extract_excel_data(file_path):
|
16 |
+
"""Extract text from Excel file"""
|
17 |
df = pd.read_excel(file_path, engine='openpyxl')
|
18 |
+
return df.to_string(index=False)
|
19 |
|
|
|
20 |
def extract_text_from_pdf(pdf_path, is_scanned=False):
|
21 |
+
"""Extract text from PDF with fallback OCR"""
|
22 |
try:
|
23 |
+
# Try native PDF extraction first
|
24 |
with pdfplumber.open(pdf_path) as pdf:
|
25 |
text = ""
|
26 |
for page in pdf.pages:
|
27 |
text += page.extract_text() + "\n"
|
28 |
return text
|
29 |
except Exception as e:
|
|
|
30 |
print(f"Native PDF extraction failed: {str(e)}")
|
31 |
+
# Fallback to OCR for scanned PDFs
|
32 |
images = convert_from_path(pdf_path, dpi=200)
|
33 |
text = ""
|
34 |
for image in images:
|
35 |
text += pytesseract.image_to_string(image) + "\n"
|
36 |
return text
|
37 |
|
|
|
38 |
def parse_bank_statement(text):
|
39 |
+
"""Parse bank statement using LLM with fallback to rule-based parser"""
|
40 |
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
|
41 |
|
42 |
+
# Craft precise prompt for LLM
|
43 |
prompt = f"""
|
44 |
+
You are a financial data parser. Extract transactions from bank statements.
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
Given this bank statement text:
|
|
|
47 |
|
48 |
+
Extract all transactions with these fields:
|
49 |
+
- Date
|
50 |
+
- Description
|
51 |
+
- Amount
|
52 |
+
- Debit
|
53 |
+
- Credit
|
54 |
+
- Closing Balance
|
55 |
+
- Category
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
Return JSON with "transactions" array containing these fields.
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
Example format:
|
60 |
+
{"transactions": [
|
61 |
+
{"date": "2025-05-08", "description": "Company XYZ Payroll", "amount": "8315.40", "debit": "0.00", "credit": "8315.40", "closing_balance": "38315.40", "category": "Salary"},
|
62 |
+
...
|
63 |
+
]}
|
64 |
+
|
65 |
+
Rules:
|
66 |
+
1. Ensure numeric fields have valid numbers (e.g., "0.00" instead of "-")
|
67 |
+
2. Convert negative balances to standard format (e.g., "-2421.72")
|
68 |
+
3. Map category names consistently (e.g., "Groceries", "Medical", "Utilities")
|
69 |
+
"""
|
70 |
+
|
71 |
+
try:
|
72 |
+
# Call LLM via Hugging Face Inference API
|
73 |
+
response = client.text_generation(prompt, max_new_tokens=1000, temperature=0.1)
|
74 |
+
return json.loads(response)
|
75 |
+
except Exception as e:
|
76 |
+
print(f"LLM Error: {str(e)}")
|
77 |
+
# Fallback to rule-based parser
|
78 |
+
return rule_based_parser(cleaned_text)
|
79 |
+
|
80 |
+
def rule_based_parser(text):
|
81 |
+
"""Fallback parser for structured tables with pipe delimiters"""
|
82 |
+
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
83 |
|
84 |
+
# Find header line containing 'Date'
|
85 |
+
header_index = None
|
86 |
+
for i, line in enumerate(lines):
|
87 |
+
if re.search(r'\bDate\b', line):
|
88 |
+
header_index = i
|
89 |
break
|
90 |
+
|
91 |
+
if header_index is None or header_index + 1 >= len(lines):
|
92 |
+
return {"transactions": []}
|
93 |
+
|
94 |
+
data_lines = lines[header_index + 1:]
|
95 |
+
transactions = []
|
96 |
+
|
97 |
+
for line in data_lines:
|
98 |
+
if not line.startswith('|'):
|
99 |
+
continue
|
100 |
+
|
101 |
+
parts = [p.strip() for p in line.split('|') if p.strip()]
|
102 |
+
if len(parts) < 7:
|
103 |
+
continue
|
104 |
|
105 |
try:
|
106 |
transactions.append({
|
107 |
+
"date": parts[0],
|
108 |
+
"description": parts[1],
|
109 |
+
"amount": parts[2],
|
110 |
+
"debit": parts[3],
|
111 |
+
"credit": parts[4],
|
112 |
+
"closing_balance": parts[5],
|
113 |
+
"category": parts[6]
|
114 |
})
|
115 |
except Exception as e:
|
116 |
+
print(f"Error parsing line: {str(e)}")
|
117 |
+
|
|
|
118 |
return {"transactions": transactions}
|
119 |
|
|
|
120 |
def process_file(file, is_scanned):
|
121 |
+
"""Main processing function"""
|
122 |
+
if not file:
|
123 |
+
return "No file uploaded"
|
124 |
+
|
125 |
file_path = file.name
|
126 |
file_ext = os.path.splitext(file_path)[1].lower()
|
127 |
|
128 |
+
try:
|
129 |
+
if file_ext == '.xlsx':
|
130 |
+
text = extract_excel_data(file_path)
|
131 |
+
elif file_ext == '.pdf':
|
132 |
+
text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
|
133 |
+
else:
|
134 |
+
return {"error": "Unsupported file format"}
|
135 |
+
|
136 |
+
parsed_data = parse_bank_statement(text)
|
137 |
+
df = pd.DataFrame(parsed_data["transactions"])
|
138 |
+
return df
|
139 |
+
except Exception as e:
|
140 |
+
return f"Error: {str(e)}"
|
141 |
|
142 |
+
# Gradio Interface
|
143 |
interface = gr.Interface(
|
144 |
fn=process_file,
|
145 |
inputs=[
|
146 |
+
gr.File(label="Upload Bank Statement (PDF/Excel)"),
|
147 |
+
gr.Checkbox(label="Is Scanned PDF? (Use OCR)")
|
148 |
],
|
149 |
+
outputs=gr.Dataframe(
|
150 |
+
label="Parsed Transactions",
|
151 |
+
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"]
|
152 |
+
),
|
153 |
+
title="AI Bank Statement Parser",
|
154 |
+
description="Extract structured transaction data from PDF/Excel bank statements using LLM and hybrid parsing techniques.",
|
155 |
allow_flagging="never"
|
156 |
)
|
157 |
|