Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,9 @@ import pytesseract
|
|
8 |
from pdf2image import convert_from_path
|
9 |
from huggingface_hub import InferenceClient
|
10 |
|
11 |
-
# Initialize Hugging Face Inference Client with a free model
|
12 |
hf_token = os.getenv("HF_TOKEN")
|
13 |
-
client = InferenceClient(model="
|
14 |
|
15 |
def extract_excel_data(file_path):
|
16 |
"""Extract text from Excel file"""
|
@@ -40,25 +40,25 @@ def parse_bank_statement(text):
|
|
40 |
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
|
41 |
print(f"Original text sample: {cleaned_text[:200]}...")
|
42 |
|
43 |
-
# Craft precise prompt
|
44 |
prompt = f"""
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
{cleaned_text}
|
49 |
|
50 |
-
|
51 |
-
- Date
|
52 |
-
- Description
|
53 |
-
- Amount
|
54 |
-
- Debit
|
55 |
-
- Credit
|
56 |
-
- Closing Balance
|
57 |
-
- Category
|
58 |
-
|
59 |
-
Return JSON with "transactions" array containing these fields.
|
60 |
-
|
61 |
-
Example format:
|
62 |
{{
|
63 |
"transactions": [
|
64 |
{{
|
@@ -82,44 +82,69 @@ Example format:
|
|
82 |
]
|
83 |
}}
|
84 |
|
85 |
-
|
86 |
-
1.
|
87 |
-
2.
|
88 |
-
3.
|
89 |
-
4.
|
|
|
|
|
|
|
90 |
"""
|
91 |
-
|
92 |
try:
|
93 |
-
# Call LLM
|
94 |
response = client.text_generation(
|
95 |
prompt,
|
96 |
max_new_tokens=2000,
|
97 |
-
temperature=0.
|
98 |
stop_sequences=["</s>"]
|
99 |
)
|
100 |
print(f"LLM Response: {response}")
|
101 |
|
102 |
-
#
|
103 |
-
|
104 |
-
if
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
except Exception as e:
|
108 |
print(f"LLM Error: {str(e)}")
|
109 |
# Fallback to rule-based parser
|
110 |
return rule_based_parser(cleaned_text)
|
111 |
|
112 |
def rule_based_parser(text):
|
113 |
-
"""
|
114 |
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
115 |
|
116 |
-
# Find header line
|
117 |
header_index = None
|
|
|
|
|
|
|
|
|
|
|
118 |
for i, line in enumerate(lines):
|
119 |
-
if re.search(
|
120 |
header_index = i
|
121 |
break
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
if header_index is None or header_index + 1 >= len(lines):
|
124 |
return {"transactions": []}
|
125 |
|
@@ -127,15 +152,17 @@ def rule_based_parser(text):
|
|
127 |
transactions = []
|
128 |
|
129 |
for line in data_lines:
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
134 |
if len(parts) < 7:
|
135 |
continue
|
136 |
|
137 |
try:
|
138 |
-
# Handle numeric values consistently
|
139 |
transactions.append({
|
140 |
"date": parts[0],
|
141 |
"description": parts[1],
|
@@ -152,9 +179,30 @@ def rule_based_parser(text):
|
|
152 |
|
153 |
def format_number(value):
|
154 |
"""Format numeric values consistently"""
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
return value
|
159 |
|
160 |
def process_file(file, is_scanned):
|
@@ -189,6 +237,7 @@ def process_file(file, is_scanned):
|
|
189 |
if col not in df.columns:
|
190 |
df[col] = ""
|
191 |
|
|
|
192 |
df.columns = ["Date", "Description", "Amount", "Debit",
|
193 |
"Credit", "Closing Balance", "Category"]
|
194 |
return df
|
@@ -210,10 +259,11 @@ interface = gr.Interface(
|
|
210 |
],
|
211 |
outputs=gr.Dataframe(
|
212 |
label="Parsed Transactions",
|
213 |
-
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"]
|
|
|
214 |
),
|
215 |
title="AI Bank Statement Parser",
|
216 |
-
description="Extract structured transaction data from PDF/Excel bank statements
|
217 |
allow_flagging="never"
|
218 |
)
|
219 |
|
|
|
8 |
from pdf2image import convert_from_path
|
9 |
from huggingface_hub import InferenceClient
|
10 |
|
11 |
+
# Initialize Hugging Face Inference Client with a better free model
|
12 |
hf_token = os.getenv("HF_TOKEN")
|
13 |
+
client = InferenceClient(model="mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token)
|
14 |
|
15 |
def extract_excel_data(file_path):
|
16 |
"""Extract text from Excel file"""
|
|
|
40 |
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
|
41 |
print(f"Original text sample: {cleaned_text[:200]}...")
|
42 |
|
43 |
+
# Craft precise prompt with strict JSON formatting instructions
|
44 |
prompt = f"""
|
45 |
+
<|system|>
|
46 |
+
You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON.
|
47 |
+
</s>
|
48 |
+
<|user|>
|
49 |
+
Extract all transactions from this bank statement with these exact fields:
|
50 |
+
- date (format: YYYY-MM-DD)
|
51 |
+
- description
|
52 |
+
- amount (format: 0.00)
|
53 |
+
- debit (format: 0.00)
|
54 |
+
- credit (format: 0.00)
|
55 |
+
- closing_balance (format: 0.00 or -0.00 for negative)
|
56 |
+
- category
|
57 |
|
58 |
+
Statement text:
|
59 |
+
{cleaned_text[:3000]} [truncated if too long]
|
60 |
|
61 |
+
Return JSON with this exact structure:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
{{
|
63 |
"transactions": [
|
64 |
{{
|
|
|
82 |
]
|
83 |
}}
|
84 |
|
85 |
+
RULES:
|
86 |
+
1. Output ONLY the JSON object with no additional text
|
87 |
+
2. Keep amounts as strings with 2 decimal places
|
88 |
+
3. For missing values, use empty strings
|
89 |
+
4. Convert negative amounts to format "-123.45"
|
90 |
+
5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc
|
91 |
+
</s>
|
92 |
+
<|assistant|>
|
93 |
"""
|
94 |
+
|
95 |
try:
|
96 |
+
# Call LLM with strict parameters
|
97 |
response = client.text_generation(
|
98 |
prompt,
|
99 |
max_new_tokens=2000,
|
100 |
+
temperature=0.01, # Lower temperature for more deterministic output
|
101 |
stop_sequences=["</s>"]
|
102 |
)
|
103 |
print(f"LLM Response: {response}")
|
104 |
|
105 |
+
# Validate and clean JSON response
|
106 |
+
response = response.strip()
|
107 |
+
if not response.startswith('{'):
|
108 |
+
# Find the first { and last } to extract JSON
|
109 |
+
start_idx = response.find('{')
|
110 |
+
end_idx = response.rfind('}')
|
111 |
+
if start_idx != -1 and end_idx != -1:
|
112 |
+
response = response[start_idx:end_idx+1]
|
113 |
+
|
114 |
+
# Parse JSON and validate structure
|
115 |
+
data = json.loads(response)
|
116 |
+
if "transactions" not in data:
|
117 |
+
raise ValueError("Missing 'transactions' key in JSON")
|
118 |
+
|
119 |
+
return data
|
120 |
except Exception as e:
|
121 |
print(f"LLM Error: {str(e)}")
|
122 |
# Fallback to rule-based parser
|
123 |
return rule_based_parser(cleaned_text)
|
124 |
|
125 |
def rule_based_parser(text):
|
126 |
+
"""Enhanced fallback parser for structured tables"""
|
127 |
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
128 |
|
129 |
+
# Find header line - more flexible detection
|
130 |
header_index = None
|
131 |
+
header_patterns = [
|
132 |
+
r'Date\b', r'Description\b', r'Amount\b',
|
133 |
+
r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
|
134 |
+
]
|
135 |
+
|
136 |
for i, line in enumerate(lines):
|
137 |
+
if all(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
|
138 |
header_index = i
|
139 |
break
|
140 |
|
141 |
+
if header_index is None:
|
142 |
+
# Try pipe-delimited format as fallback
|
143 |
+
for i, line in enumerate(lines):
|
144 |
+
if '|' in line and any(p in line for p in ['Date', 'Amount', 'Balance']):
|
145 |
+
header_index = i
|
146 |
+
break
|
147 |
+
|
148 |
if header_index is None or header_index + 1 >= len(lines):
|
149 |
return {"transactions": []}
|
150 |
|
|
|
152 |
transactions = []
|
153 |
|
154 |
for line in data_lines:
|
155 |
+
# Handle both pipe-delimited and space-aligned formats
|
156 |
+
if '|' in line:
|
157 |
+
parts = [p.strip() for p in line.split('|') if p.strip()]
|
158 |
+
else:
|
159 |
+
# Space-aligned format - split by 2+ spaces
|
160 |
+
parts = re.split(r'\s{2,}', line)
|
161 |
+
|
162 |
if len(parts) < 7:
|
163 |
continue
|
164 |
|
165 |
try:
|
|
|
166 |
transactions.append({
|
167 |
"date": parts[0],
|
168 |
"description": parts[1],
|
|
|
179 |
|
180 |
def format_number(value):
|
181 |
"""Format numeric values consistently"""
|
182 |
+
if not value:
|
183 |
+
return "0.00"
|
184 |
+
|
185 |
+
# Clean numeric values
|
186 |
+
value = value.replace(',', '').replace('$', '').strip()
|
187 |
+
|
188 |
+
# Handle negative numbers in parentheses
|
189 |
+
if '(' in value and ')' in value:
|
190 |
+
value = '-' + value.replace('(', '').replace(')', '')
|
191 |
+
|
192 |
+
# Standardize decimal format
|
193 |
+
if '.' not in value:
|
194 |
+
value += '.00'
|
195 |
+
|
196 |
+
# Ensure two decimal places
|
197 |
+
parts = value.split('.')
|
198 |
+
if len(parts) == 2:
|
199 |
+
integer = parts[0].lstrip('0') or '0'
|
200 |
+
decimal = parts[1][:2].ljust(2, '0')
|
201 |
+
value = f"{integer}.{decimal}"
|
202 |
+
|
203 |
+
# Handle negative signs
|
204 |
+
if value.startswith('-'):
|
205 |
+
return f"-{value[1:].lstrip('0')}" if value[1:] != '0.00' else '0.00'
|
206 |
return value
|
207 |
|
208 |
def process_file(file, is_scanned):
|
|
|
237 |
if col not in df.columns:
|
238 |
df[col] = ""
|
239 |
|
240 |
+
# Format columns properly
|
241 |
df.columns = ["Date", "Description", "Amount", "Debit",
|
242 |
"Credit", "Closing Balance", "Category"]
|
243 |
return df
|
|
|
259 |
],
|
260 |
outputs=gr.Dataframe(
|
261 |
label="Parsed Transactions",
|
262 |
+
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
|
263 |
+
datatype=["date", "str", "number", "number", "number", "number", "str"]
|
264 |
),
|
265 |
title="AI Bank Statement Parser",
|
266 |
+
description="Extract structured transaction data from PDF/Excel bank statements",
|
267 |
allow_flagging="never"
|
268 |
)
|
269 |
|