Texte / app.py
Bernd-Ebenhoch's picture
Upload app.py
09aad05
raw
history blame
8.87 kB
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 26 21:07:00 2023
@author: Bernd Ebenhoch
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from matplotlib.animation import FuncAnimation
import matplotlib as mpl
import streamlit as st
from matplotlib import cm
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import mpl_toolkits.mplot3d as a3
import matplotlib.colors as colors
from matplotlib.colors import LightSource
from tensorflow import keras
import pandas as pd
# Farben definieren
cb = [15/255, 25/255, 35/255]
cf = [25/255*2, 35/255*2, 45/255*2]
w = [242/255, 242/255, 242/255]
blue = [68/255, 114/255, 196/255]
orange = [197/255, 90/255, 17/255]
tab1, tab2, tab3 = st.tabs(["Künstliche Neuronale Netze", "Wörter Maskieren", "Demos"])
with tab1:
col1, col2 = tab1.columns(2)
size = np.array([12., 27., 32., 47., 58., 56., 58., 61.,
64., 67., 70., 80., 84., 88., 108.])
price = np.array([88., 135., 178., 216., 220., 246., 241., 275.,
305., 267., 297., 310., 292., 317., 422.])
location = np.array([2., 2., 0., 1., 2., 0., 1., 0., 1., 2., 0., 2., 1., 1., 2.])
price[location == 1] = price[location == 1]*1+30
price[location == 2] = price[location == 2]*1+60
size_location = np.concatenate((size.reshape(-1, 1), location.reshape(-1, 1)), axis=1)
data = np.concatenate((size.reshape(-1, 1), location.reshape(-1, 1),
price.reshape(-1, 1)), axis=1)
data = pd.DataFrame(data, columns=['Wohnungsgröße (qm)', 'Ort', 'Preis (k€)'])
col1.dataframe(data.style.format(precision=0))
#edited_df = st.experimental_data_editor(data)
edited_df = data
edited_data = edited_df.to_numpy()
size_location = edited_data[:, :2]
price = edited_data[:, 2]
string = col2.text_area(
'Architektur des neuronalen Netzes. Anzahl der Neuronen in den einzelnen Schichten', value='4', height=275)
layers = string.split('\n')
if st.button('Modell trainieren und Fit-Kurve darstellen'):
with st.spinner('Der Fit-Prozess kann einige Sekunden dauern ...'):
model = keras.models.Sequential()
if len(layers) > 0:
for neurons in layers:
model.add(keras.layers.Dense(int(neurons), activation='tanh'))
model.add(keras.layers.Dense(1, activation='tanh'))
model.compile(loss='binary_crossentropy', optimizer='SGD')
lr_reduction = keras.callbacks.ReduceLROnPlateau(
monitor='loss', patience=1000, min_lr=0.00001)
model.fit(size_location/[120, 2], price/500, epochs=5000,
batch_size=4, callbacks=lr_reduction, verbose=False)
y_pred = model.predict((size_location)/[120, 2], verbose=False).reshape(-1)*500
x = np.linspace(0, 125, 400)
y = np.linspace(0, 2, 400)
X, Y = np.meshgrid(x, y)
Z = np.concatenate([X.reshape(-1, 1)/120, Y.reshape(-1, 1)/2], axis=1)
Z = model.predict(Z, verbose=False)*500
Z = Z.reshape(len(y), len(x))
fig = plt.figure(facecolor=cb, figsize=(7, 7))
ax = fig.add_subplot(projection='3d')
ax.tick_params(color=w, labelcolor=w, labelsize=12)
ax.set_facecolor(cb)
ax.w_xaxis.set_pane_color(cf)
ax.w_yaxis.set_pane_color(cf)
ax.w_zaxis.set_pane_color(cf)
ax.set_yticks([0, 1, 2])
ax.view_init(25, 50)
rgb = np.tile(orange, (Z.shape[0], Z.shape[1], 1))
ls = LightSource(azdeg=315, altdeg=45, hsv_min_val=0.9,
hsv_max_val=1, hsv_min_sat=1, hsv_max_sat=0)
illuminated_surface = ls.shade_rgb(rgb, Z)
below_price = price[price < y_pred]
below_location = location[price < y_pred]
below_size = size[price < y_pred]
ax.plot(below_size, below_location, below_price, '.', markersize=20, color=blue)
ax.plot_surface(X, Y, Z, facecolors=illuminated_surface, edgecolors=[0, 0, 0, 0],
linewidth=0, antialiased=True, rcount=400, ccount=400, alpha=0.8)
above_price = price[price >= y_pred]
above_location = location[price >= y_pred]
above_size = size[price >= y_pred]
ax.plot(above_size, above_location, above_price,
'.', markersize=20, color=blue, zorder=20,)
ax.set_ylim(2, 0)
ax.set_xlim(125, 0)
ax.set_zlim(0, 450)
ax.set_xlabel('Wohnungsgröße (qm)', color=w, fontsize=15, labelpad=10)
ax.set_ylabel('Ort', color=w, fontsize=15, labelpad=10)
ax.set_zlabel('Preis (k€)', color=w, fontsize=15, rotation=270, labelpad=10)
st.pyplot(fig)
# %%
with tab2:
text_input = 'Das schöne Allgäu\n' + \
'Das wunderbare Allgäu\n' + \
'Das grüne Allgäu\n' + \
'Radfahren im Allgäu\n' + \
'Wandern im Allgäu\n' + \
'Radfahren in Oberschwaben\n' + \
'Urlaub in Oberschwaben\n' + \
'Künstliche Intelligenz für das Allgäu\n' + \
'Künstliche Intelligenz für Oberschwaben\n' + \
'Data Science für Oberschwaben\n' + \
'Data Science und Machine Learning\n' + \
'Machine Learning für das Allgäu'
string = st.text_area('', value=text_input, height=275)
text = string.split('\n')
if st.button('Modell trainieren und Wort-Vektoren darstellen'):
with st.spinner('Der Fit-Prozess kann einige Sekunden dauern ...'):
vectorizer = tf.keras.layers.TextVectorization(
max_tokens=1000, output_sequence_length=7)
vectorizer.adapt(text)
def generator():
while True:
x = vectorizer(text)
mask = tf.reduce_max(x)+1
lengths = tf.argmin(x, axis=1)
lengths = tf.cast(lengths, tf.float32)
masks = tf.random.uniform(shape=(x.shape[0],), minval=0, maxval=lengths)
masks = tf.cast(masks, tf.int32)
masks = tf.one_hot(masks, x.shape[1], dtype=tf.int32)
masks = tf.cast(masks, tf.bool)
y = x[masks]
masks = tf.cast(masks, tf.int64)
x = x * (1-masks) + mask * masks
yield x, y
# data = tf.data.Dataset.from_tensor_slices(vectorizer(text),vectorizer(text))
# data = data.map(masking_generator)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Embedding(vectorizer.vocabulary_size()+1, 3))
model.add(tf.keras.layers.LSTM(100, return_sequences=False, activation='sigmoid'))
model.add(tf.keras.layers.Dense(vectorizer.vocabulary_size(), activation='softmax'))
model.summary()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
lr_reduce = tf.keras.callbacks.ReduceLROnPlateau(
monitor='loss', patience=500, min_lr=1e-6)
model.fit(generator(), steps_per_epoch=1,
epochs=3000, callbacks=lr_reduce, verbose=False)
fig = plt.figure(facecolor=cb, figsize=(7, 7))
ax = fig.add_subplot()
ax.tick_params(color=w, labelcolor=w, labelsize=12)
ax.set_facecolor(cb)
embed_model = tf.keras.models.Model(model.input, model.layers[0].output)
X_embed = embed_model(vectorizer(vectorizer.get_vocabulary(
include_special_tokens=False)))[:, 0, :]
# 1. Dimension der Wort-Vektoren auf X-Achse,
# 2. Dimension auf y-Achse, 3. auf die Z-Achse abbilden
ax.scatter(X_embed[:, 0], X_embed[:, 1],
color=blue)
for i in range(vectorizer.vocabulary_size()-2):
ax.text(X_embed[i, 0], X_embed[i, 1],
vectorizer.get_vocabulary(include_special_tokens=False)[i],
color=w)
ax.set_ylim(-2, 2)
ax.set_xlim(-2, 2)
ax.set_xticks([-2, -1, 0, 1, 2])
ax.set_yticks([-2, -1, 0, 1, 2])
ax.spines['bottom'].set_color(w)
ax.spines['top'].set_color(w)
ax.spines['right'].set_color(w)
ax.spines['left'].set_color(w)
ax.set_xlabel('Dimension 1', color=w, fontsize=15, labelpad=10)
ax.set_ylabel('Dimension 2', color=w, fontsize=15, labelpad=10)
st.pyplot(fig)
# %%
with tab3:
st.header("An owl")