File size: 8,867 Bytes
09aad05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 26 21:07:00 2023

@author: Bernd Ebenhoch
"""


import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from matplotlib.animation import FuncAnimation
import matplotlib as mpl
import streamlit as st

from matplotlib import cm

import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import mpl_toolkits.mplot3d as a3
import matplotlib.colors as colors
from matplotlib.colors import LightSource
from tensorflow import keras
import pandas as pd


# Farben definieren
cb = [15/255, 25/255, 35/255]
cf = [25/255*2, 35/255*2, 45/255*2]
w = [242/255, 242/255, 242/255]
blue = [68/255, 114/255, 196/255]
orange = [197/255, 90/255, 17/255]

tab1, tab2, tab3 = st.tabs(["Künstliche Neuronale Netze", "Wörter Maskieren", "Demos"])


with tab1:
    col1, col2 = tab1.columns(2)
    size = np.array([12., 27., 32., 47., 58., 56., 58., 61.,
                    64., 67., 70., 80., 84., 88., 108.])
    price = np.array([88., 135., 178., 216., 220., 246., 241., 275.,
                     305., 267., 297., 310., 292., 317., 422.])
    location = np.array([2., 2., 0., 1., 2., 0., 1., 0., 1., 2., 0., 2., 1., 1., 2.])
    price[location == 1] = price[location == 1]*1+30
    price[location == 2] = price[location == 2]*1+60

    size_location = np.concatenate((size.reshape(-1, 1), location.reshape(-1, 1)), axis=1)

    data = np.concatenate((size.reshape(-1, 1), location.reshape(-1, 1),
                          price.reshape(-1, 1)), axis=1)
    data = pd.DataFrame(data, columns=['Wohnungsgröße (qm)', 'Ort', 'Preis (k€)'])

    col1.dataframe(data.style.format(precision=0))
    #edited_df = st.experimental_data_editor(data)
    edited_df = data

    edited_data = edited_df.to_numpy()
    size_location = edited_data[:, :2]
    price = edited_data[:, 2]

    string = col2.text_area(
        'Architektur des neuronalen Netzes. Anzahl der Neuronen in den einzelnen Schichten', value='4', height=275)
    layers = string.split('\n')

    if st.button('Modell trainieren und Fit-Kurve darstellen'):

        with st.spinner('Der Fit-Prozess kann einige Sekunden dauern ...'):

            model = keras.models.Sequential()

            if len(layers) > 0:
                for neurons in layers:
                    model.add(keras.layers.Dense(int(neurons), activation='tanh'))
            model.add(keras.layers.Dense(1, activation='tanh'))

            model.compile(loss='binary_crossentropy', optimizer='SGD')

            lr_reduction = keras.callbacks.ReduceLROnPlateau(
                monitor='loss', patience=1000, min_lr=0.00001)

            model.fit(size_location/[120, 2], price/500, epochs=5000,
                      batch_size=4, callbacks=lr_reduction, verbose=False)

            y_pred = model.predict((size_location)/[120, 2], verbose=False).reshape(-1)*500

            x = np.linspace(0, 125, 400)
            y = np.linspace(0, 2, 400)
            X, Y = np.meshgrid(x, y)

            Z = np.concatenate([X.reshape(-1, 1)/120, Y.reshape(-1, 1)/2], axis=1)
            Z = model.predict(Z, verbose=False)*500

            Z = Z.reshape(len(y), len(x))

            fig = plt.figure(facecolor=cb, figsize=(7, 7))
            ax = fig.add_subplot(projection='3d')
            ax.tick_params(color=w, labelcolor=w, labelsize=12)
            ax.set_facecolor(cb)

            ax.w_xaxis.set_pane_color(cf)
            ax.w_yaxis.set_pane_color(cf)
            ax.w_zaxis.set_pane_color(cf)

            ax.set_yticks([0, 1, 2])
            ax.view_init(25, 50)

            rgb = np.tile(orange, (Z.shape[0], Z.shape[1], 1))

            ls = LightSource(azdeg=315, altdeg=45, hsv_min_val=0.9,
                             hsv_max_val=1, hsv_min_sat=1, hsv_max_sat=0)
            illuminated_surface = ls.shade_rgb(rgb, Z)

            below_price = price[price < y_pred]
            below_location = location[price < y_pred]
            below_size = size[price < y_pred]

            ax.plot(below_size, below_location, below_price, '.', markersize=20, color=blue)

            ax.plot_surface(X, Y, Z, facecolors=illuminated_surface, edgecolors=[0, 0, 0, 0],
                            linewidth=0, antialiased=True, rcount=400, ccount=400, alpha=0.8)

            above_price = price[price >= y_pred]
            above_location = location[price >= y_pred]
            above_size = size[price >= y_pred]

            ax.plot(above_size, above_location, above_price,
                    '.', markersize=20, color=blue, zorder=20,)

            ax.set_ylim(2, 0)
            ax.set_xlim(125, 0)
            ax.set_zlim(0, 450)

            ax.set_xlabel('Wohnungsgröße (qm)', color=w, fontsize=15, labelpad=10)
            ax.set_ylabel('Ort', color=w, fontsize=15, labelpad=10)
            ax.set_zlabel('Preis (k€)', color=w, fontsize=15, rotation=270, labelpad=10)

            st.pyplot(fig)


# %%
with tab2:

    text_input = 'Das schöne Allgäu\n' + \
        'Das wunderbare Allgäu\n' + \
        'Das grüne Allgäu\n' + \
        'Radfahren im Allgäu\n' + \
        'Wandern im Allgäu\n' + \
        'Radfahren in Oberschwaben\n' + \
        'Urlaub in Oberschwaben\n' + \
        'Künstliche Intelligenz für das Allgäu\n' + \
        'Künstliche Intelligenz für Oberschwaben\n' + \
        'Data Science für Oberschwaben\n' + \
        'Data Science und Machine Learning\n' + \
        'Machine Learning für das Allgäu'

    string = st.text_area('', value=text_input, height=275)
    text = string.split('\n')

    if st.button('Modell trainieren und Wort-Vektoren darstellen'):
        with st.spinner('Der Fit-Prozess kann einige Sekunden dauern ...'):

            vectorizer = tf.keras.layers.TextVectorization(
                max_tokens=1000, output_sequence_length=7)

            vectorizer.adapt(text)

            def generator():
                while True:
                    x = vectorizer(text)
                    mask = tf.reduce_max(x)+1

                    lengths = tf.argmin(x, axis=1)
                    lengths = tf.cast(lengths, tf.float32)

                    masks = tf.random.uniform(shape=(x.shape[0],), minval=0, maxval=lengths)
                    masks = tf.cast(masks, tf.int32)

                    masks = tf.one_hot(masks, x.shape[1], dtype=tf.int32)
                    masks = tf.cast(masks, tf.bool)

                    y = x[masks]
                    masks = tf.cast(masks, tf.int64)
                    x = x * (1-masks) + mask * masks
                    yield x, y

            # data = tf.data.Dataset.from_tensor_slices(vectorizer(text),vectorizer(text))
            # data = data.map(masking_generator)
            model = tf.keras.models.Sequential()

            model.add(tf.keras.layers.Embedding(vectorizer.vocabulary_size()+1, 3))

            model.add(tf.keras.layers.LSTM(100, return_sequences=False, activation='sigmoid'))
            model.add(tf.keras.layers.Dense(vectorizer.vocabulary_size(), activation='softmax'))

            model.summary()

            model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
                          metrics=['accuracy'])

            lr_reduce = tf.keras.callbacks.ReduceLROnPlateau(
                monitor='loss', patience=500, min_lr=1e-6)
            model.fit(generator(), steps_per_epoch=1,
                      epochs=3000, callbacks=lr_reduce, verbose=False)

            fig = plt.figure(facecolor=cb, figsize=(7, 7))
            ax = fig.add_subplot()
            ax.tick_params(color=w, labelcolor=w, labelsize=12)
            ax.set_facecolor(cb)

            embed_model = tf.keras.models.Model(model.input, model.layers[0].output)
            X_embed = embed_model(vectorizer(vectorizer.get_vocabulary(
                include_special_tokens=False)))[:, 0, :]

            # 1. Dimension der Wort-Vektoren auf X-Achse,
            # 2. Dimension auf y-Achse, 3. auf die Z-Achse abbilden
            ax.scatter(X_embed[:, 0], X_embed[:, 1],
                       color=blue)
            for i in range(vectorizer.vocabulary_size()-2):
                ax.text(X_embed[i, 0], X_embed[i, 1],
                        vectorizer.get_vocabulary(include_special_tokens=False)[i],
                        color=w)

            ax.set_ylim(-2, 2)
            ax.set_xlim(-2, 2)

            ax.set_xticks([-2, -1, 0, 1, 2])
            ax.set_yticks([-2, -1, 0, 1, 2])

            ax.spines['bottom'].set_color(w)
            ax.spines['top'].set_color(w)
            ax.spines['right'].set_color(w)
            ax.spines['left'].set_color(w)

            ax.set_xlabel('Dimension 1', color=w, fontsize=15, labelpad=10)
            ax.set_ylabel('Dimension 2', color=w, fontsize=15, labelpad=10)

            st.pyplot(fig)


# %%
with tab3:
    st.header("An owl")