Spaces:
Runtime error
Runtime error
File size: 8,867 Bytes
09aad05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 26 21:07:00 2023
@author: Bernd Ebenhoch
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from matplotlib.animation import FuncAnimation
import matplotlib as mpl
import streamlit as st
from matplotlib import cm
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import mpl_toolkits.mplot3d as a3
import matplotlib.colors as colors
from matplotlib.colors import LightSource
from tensorflow import keras
import pandas as pd
# Farben definieren
cb = [15/255, 25/255, 35/255]
cf = [25/255*2, 35/255*2, 45/255*2]
w = [242/255, 242/255, 242/255]
blue = [68/255, 114/255, 196/255]
orange = [197/255, 90/255, 17/255]
tab1, tab2, tab3 = st.tabs(["Künstliche Neuronale Netze", "Wörter Maskieren", "Demos"])
with tab1:
col1, col2 = tab1.columns(2)
size = np.array([12., 27., 32., 47., 58., 56., 58., 61.,
64., 67., 70., 80., 84., 88., 108.])
price = np.array([88., 135., 178., 216., 220., 246., 241., 275.,
305., 267., 297., 310., 292., 317., 422.])
location = np.array([2., 2., 0., 1., 2., 0., 1., 0., 1., 2., 0., 2., 1., 1., 2.])
price[location == 1] = price[location == 1]*1+30
price[location == 2] = price[location == 2]*1+60
size_location = np.concatenate((size.reshape(-1, 1), location.reshape(-1, 1)), axis=1)
data = np.concatenate((size.reshape(-1, 1), location.reshape(-1, 1),
price.reshape(-1, 1)), axis=1)
data = pd.DataFrame(data, columns=['Wohnungsgröße (qm)', 'Ort', 'Preis (k€)'])
col1.dataframe(data.style.format(precision=0))
#edited_df = st.experimental_data_editor(data)
edited_df = data
edited_data = edited_df.to_numpy()
size_location = edited_data[:, :2]
price = edited_data[:, 2]
string = col2.text_area(
'Architektur des neuronalen Netzes. Anzahl der Neuronen in den einzelnen Schichten', value='4', height=275)
layers = string.split('\n')
if st.button('Modell trainieren und Fit-Kurve darstellen'):
with st.spinner('Der Fit-Prozess kann einige Sekunden dauern ...'):
model = keras.models.Sequential()
if len(layers) > 0:
for neurons in layers:
model.add(keras.layers.Dense(int(neurons), activation='tanh'))
model.add(keras.layers.Dense(1, activation='tanh'))
model.compile(loss='binary_crossentropy', optimizer='SGD')
lr_reduction = keras.callbacks.ReduceLROnPlateau(
monitor='loss', patience=1000, min_lr=0.00001)
model.fit(size_location/[120, 2], price/500, epochs=5000,
batch_size=4, callbacks=lr_reduction, verbose=False)
y_pred = model.predict((size_location)/[120, 2], verbose=False).reshape(-1)*500
x = np.linspace(0, 125, 400)
y = np.linspace(0, 2, 400)
X, Y = np.meshgrid(x, y)
Z = np.concatenate([X.reshape(-1, 1)/120, Y.reshape(-1, 1)/2], axis=1)
Z = model.predict(Z, verbose=False)*500
Z = Z.reshape(len(y), len(x))
fig = plt.figure(facecolor=cb, figsize=(7, 7))
ax = fig.add_subplot(projection='3d')
ax.tick_params(color=w, labelcolor=w, labelsize=12)
ax.set_facecolor(cb)
ax.w_xaxis.set_pane_color(cf)
ax.w_yaxis.set_pane_color(cf)
ax.w_zaxis.set_pane_color(cf)
ax.set_yticks([0, 1, 2])
ax.view_init(25, 50)
rgb = np.tile(orange, (Z.shape[0], Z.shape[1], 1))
ls = LightSource(azdeg=315, altdeg=45, hsv_min_val=0.9,
hsv_max_val=1, hsv_min_sat=1, hsv_max_sat=0)
illuminated_surface = ls.shade_rgb(rgb, Z)
below_price = price[price < y_pred]
below_location = location[price < y_pred]
below_size = size[price < y_pred]
ax.plot(below_size, below_location, below_price, '.', markersize=20, color=blue)
ax.plot_surface(X, Y, Z, facecolors=illuminated_surface, edgecolors=[0, 0, 0, 0],
linewidth=0, antialiased=True, rcount=400, ccount=400, alpha=0.8)
above_price = price[price >= y_pred]
above_location = location[price >= y_pred]
above_size = size[price >= y_pred]
ax.plot(above_size, above_location, above_price,
'.', markersize=20, color=blue, zorder=20,)
ax.set_ylim(2, 0)
ax.set_xlim(125, 0)
ax.set_zlim(0, 450)
ax.set_xlabel('Wohnungsgröße (qm)', color=w, fontsize=15, labelpad=10)
ax.set_ylabel('Ort', color=w, fontsize=15, labelpad=10)
ax.set_zlabel('Preis (k€)', color=w, fontsize=15, rotation=270, labelpad=10)
st.pyplot(fig)
# %%
with tab2:
text_input = 'Das schöne Allgäu\n' + \
'Das wunderbare Allgäu\n' + \
'Das grüne Allgäu\n' + \
'Radfahren im Allgäu\n' + \
'Wandern im Allgäu\n' + \
'Radfahren in Oberschwaben\n' + \
'Urlaub in Oberschwaben\n' + \
'Künstliche Intelligenz für das Allgäu\n' + \
'Künstliche Intelligenz für Oberschwaben\n' + \
'Data Science für Oberschwaben\n' + \
'Data Science und Machine Learning\n' + \
'Machine Learning für das Allgäu'
string = st.text_area('', value=text_input, height=275)
text = string.split('\n')
if st.button('Modell trainieren und Wort-Vektoren darstellen'):
with st.spinner('Der Fit-Prozess kann einige Sekunden dauern ...'):
vectorizer = tf.keras.layers.TextVectorization(
max_tokens=1000, output_sequence_length=7)
vectorizer.adapt(text)
def generator():
while True:
x = vectorizer(text)
mask = tf.reduce_max(x)+1
lengths = tf.argmin(x, axis=1)
lengths = tf.cast(lengths, tf.float32)
masks = tf.random.uniform(shape=(x.shape[0],), minval=0, maxval=lengths)
masks = tf.cast(masks, tf.int32)
masks = tf.one_hot(masks, x.shape[1], dtype=tf.int32)
masks = tf.cast(masks, tf.bool)
y = x[masks]
masks = tf.cast(masks, tf.int64)
x = x * (1-masks) + mask * masks
yield x, y
# data = tf.data.Dataset.from_tensor_slices(vectorizer(text),vectorizer(text))
# data = data.map(masking_generator)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Embedding(vectorizer.vocabulary_size()+1, 3))
model.add(tf.keras.layers.LSTM(100, return_sequences=False, activation='sigmoid'))
model.add(tf.keras.layers.Dense(vectorizer.vocabulary_size(), activation='softmax'))
model.summary()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
lr_reduce = tf.keras.callbacks.ReduceLROnPlateau(
monitor='loss', patience=500, min_lr=1e-6)
model.fit(generator(), steps_per_epoch=1,
epochs=3000, callbacks=lr_reduce, verbose=False)
fig = plt.figure(facecolor=cb, figsize=(7, 7))
ax = fig.add_subplot()
ax.tick_params(color=w, labelcolor=w, labelsize=12)
ax.set_facecolor(cb)
embed_model = tf.keras.models.Model(model.input, model.layers[0].output)
X_embed = embed_model(vectorizer(vectorizer.get_vocabulary(
include_special_tokens=False)))[:, 0, :]
# 1. Dimension der Wort-Vektoren auf X-Achse,
# 2. Dimension auf y-Achse, 3. auf die Z-Achse abbilden
ax.scatter(X_embed[:, 0], X_embed[:, 1],
color=blue)
for i in range(vectorizer.vocabulary_size()-2):
ax.text(X_embed[i, 0], X_embed[i, 1],
vectorizer.get_vocabulary(include_special_tokens=False)[i],
color=w)
ax.set_ylim(-2, 2)
ax.set_xlim(-2, 2)
ax.set_xticks([-2, -1, 0, 1, 2])
ax.set_yticks([-2, -1, 0, 1, 2])
ax.spines['bottom'].set_color(w)
ax.spines['top'].set_color(w)
ax.spines['right'].set_color(w)
ax.spines['left'].set_color(w)
ax.set_xlabel('Dimension 1', color=w, fontsize=15, labelpad=10)
ax.set_ylabel('Dimension 2', color=w, fontsize=15, labelpad=10)
st.pyplot(fig)
# %%
with tab3:
st.header("An owl")
|