Spaces:
Runtime error
Runtime error
Commit
·
09aad05
1
Parent(s):
e005fbe
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Sun Mar 26 21:07:00 2023
|
| 4 |
+
|
| 5 |
+
@author: Bernd Ebenhoch
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
import tensorflow as tf
|
| 10 |
+
import numpy as np
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
from matplotlib import animation
|
| 13 |
+
from matplotlib.animation import FuncAnimation
|
| 14 |
+
import matplotlib as mpl
|
| 15 |
+
import streamlit as st
|
| 16 |
+
|
| 17 |
+
from matplotlib import cm
|
| 18 |
+
|
| 19 |
+
import matplotlib.pyplot as plt
|
| 20 |
+
from sklearn.linear_model import LinearRegression
|
| 21 |
+
import mpl_toolkits.mplot3d as a3
|
| 22 |
+
import matplotlib.colors as colors
|
| 23 |
+
from matplotlib.colors import LightSource
|
| 24 |
+
from tensorflow import keras
|
| 25 |
+
import pandas as pd
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# Farben definieren
|
| 29 |
+
cb = [15/255, 25/255, 35/255]
|
| 30 |
+
cf = [25/255*2, 35/255*2, 45/255*2]
|
| 31 |
+
w = [242/255, 242/255, 242/255]
|
| 32 |
+
blue = [68/255, 114/255, 196/255]
|
| 33 |
+
orange = [197/255, 90/255, 17/255]
|
| 34 |
+
|
| 35 |
+
tab1, tab2, tab3 = st.tabs(["Künstliche Neuronale Netze", "Wörter Maskieren", "Demos"])
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
with tab1:
|
| 39 |
+
col1, col2 = tab1.columns(2)
|
| 40 |
+
size = np.array([12., 27., 32., 47., 58., 56., 58., 61.,
|
| 41 |
+
64., 67., 70., 80., 84., 88., 108.])
|
| 42 |
+
price = np.array([88., 135., 178., 216., 220., 246., 241., 275.,
|
| 43 |
+
305., 267., 297., 310., 292., 317., 422.])
|
| 44 |
+
location = np.array([2., 2., 0., 1., 2., 0., 1., 0., 1., 2., 0., 2., 1., 1., 2.])
|
| 45 |
+
price[location == 1] = price[location == 1]*1+30
|
| 46 |
+
price[location == 2] = price[location == 2]*1+60
|
| 47 |
+
|
| 48 |
+
size_location = np.concatenate((size.reshape(-1, 1), location.reshape(-1, 1)), axis=1)
|
| 49 |
+
|
| 50 |
+
data = np.concatenate((size.reshape(-1, 1), location.reshape(-1, 1),
|
| 51 |
+
price.reshape(-1, 1)), axis=1)
|
| 52 |
+
data = pd.DataFrame(data, columns=['Wohnungsgröße (qm)', 'Ort', 'Preis (k€)'])
|
| 53 |
+
|
| 54 |
+
col1.dataframe(data.style.format(precision=0))
|
| 55 |
+
#edited_df = st.experimental_data_editor(data)
|
| 56 |
+
edited_df = data
|
| 57 |
+
|
| 58 |
+
edited_data = edited_df.to_numpy()
|
| 59 |
+
size_location = edited_data[:, :2]
|
| 60 |
+
price = edited_data[:, 2]
|
| 61 |
+
|
| 62 |
+
string = col2.text_area(
|
| 63 |
+
'Architektur des neuronalen Netzes. Anzahl der Neuronen in den einzelnen Schichten', value='4', height=275)
|
| 64 |
+
layers = string.split('\n')
|
| 65 |
+
|
| 66 |
+
if st.button('Modell trainieren und Fit-Kurve darstellen'):
|
| 67 |
+
|
| 68 |
+
with st.spinner('Der Fit-Prozess kann einige Sekunden dauern ...'):
|
| 69 |
+
|
| 70 |
+
model = keras.models.Sequential()
|
| 71 |
+
|
| 72 |
+
if len(layers) > 0:
|
| 73 |
+
for neurons in layers:
|
| 74 |
+
model.add(keras.layers.Dense(int(neurons), activation='tanh'))
|
| 75 |
+
model.add(keras.layers.Dense(1, activation='tanh'))
|
| 76 |
+
|
| 77 |
+
model.compile(loss='binary_crossentropy', optimizer='SGD')
|
| 78 |
+
|
| 79 |
+
lr_reduction = keras.callbacks.ReduceLROnPlateau(
|
| 80 |
+
monitor='loss', patience=1000, min_lr=0.00001)
|
| 81 |
+
|
| 82 |
+
model.fit(size_location/[120, 2], price/500, epochs=5000,
|
| 83 |
+
batch_size=4, callbacks=lr_reduction, verbose=False)
|
| 84 |
+
|
| 85 |
+
y_pred = model.predict((size_location)/[120, 2], verbose=False).reshape(-1)*500
|
| 86 |
+
|
| 87 |
+
x = np.linspace(0, 125, 400)
|
| 88 |
+
y = np.linspace(0, 2, 400)
|
| 89 |
+
X, Y = np.meshgrid(x, y)
|
| 90 |
+
|
| 91 |
+
Z = np.concatenate([X.reshape(-1, 1)/120, Y.reshape(-1, 1)/2], axis=1)
|
| 92 |
+
Z = model.predict(Z, verbose=False)*500
|
| 93 |
+
|
| 94 |
+
Z = Z.reshape(len(y), len(x))
|
| 95 |
+
|
| 96 |
+
fig = plt.figure(facecolor=cb, figsize=(7, 7))
|
| 97 |
+
ax = fig.add_subplot(projection='3d')
|
| 98 |
+
ax.tick_params(color=w, labelcolor=w, labelsize=12)
|
| 99 |
+
ax.set_facecolor(cb)
|
| 100 |
+
|
| 101 |
+
ax.w_xaxis.set_pane_color(cf)
|
| 102 |
+
ax.w_yaxis.set_pane_color(cf)
|
| 103 |
+
ax.w_zaxis.set_pane_color(cf)
|
| 104 |
+
|
| 105 |
+
ax.set_yticks([0, 1, 2])
|
| 106 |
+
ax.view_init(25, 50)
|
| 107 |
+
|
| 108 |
+
rgb = np.tile(orange, (Z.shape[0], Z.shape[1], 1))
|
| 109 |
+
|
| 110 |
+
ls = LightSource(azdeg=315, altdeg=45, hsv_min_val=0.9,
|
| 111 |
+
hsv_max_val=1, hsv_min_sat=1, hsv_max_sat=0)
|
| 112 |
+
illuminated_surface = ls.shade_rgb(rgb, Z)
|
| 113 |
+
|
| 114 |
+
below_price = price[price < y_pred]
|
| 115 |
+
below_location = location[price < y_pred]
|
| 116 |
+
below_size = size[price < y_pred]
|
| 117 |
+
|
| 118 |
+
ax.plot(below_size, below_location, below_price, '.', markersize=20, color=blue)
|
| 119 |
+
|
| 120 |
+
ax.plot_surface(X, Y, Z, facecolors=illuminated_surface, edgecolors=[0, 0, 0, 0],
|
| 121 |
+
linewidth=0, antialiased=True, rcount=400, ccount=400, alpha=0.8)
|
| 122 |
+
|
| 123 |
+
above_price = price[price >= y_pred]
|
| 124 |
+
above_location = location[price >= y_pred]
|
| 125 |
+
above_size = size[price >= y_pred]
|
| 126 |
+
|
| 127 |
+
ax.plot(above_size, above_location, above_price,
|
| 128 |
+
'.', markersize=20, color=blue, zorder=20,)
|
| 129 |
+
|
| 130 |
+
ax.set_ylim(2, 0)
|
| 131 |
+
ax.set_xlim(125, 0)
|
| 132 |
+
ax.set_zlim(0, 450)
|
| 133 |
+
|
| 134 |
+
ax.set_xlabel('Wohnungsgröße (qm)', color=w, fontsize=15, labelpad=10)
|
| 135 |
+
ax.set_ylabel('Ort', color=w, fontsize=15, labelpad=10)
|
| 136 |
+
ax.set_zlabel('Preis (k€)', color=w, fontsize=15, rotation=270, labelpad=10)
|
| 137 |
+
|
| 138 |
+
st.pyplot(fig)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# %%
|
| 142 |
+
with tab2:
|
| 143 |
+
|
| 144 |
+
text_input = 'Das schöne Allgäu\n' + \
|
| 145 |
+
'Das wunderbare Allgäu\n' + \
|
| 146 |
+
'Das grüne Allgäu\n' + \
|
| 147 |
+
'Radfahren im Allgäu\n' + \
|
| 148 |
+
'Wandern im Allgäu\n' + \
|
| 149 |
+
'Radfahren in Oberschwaben\n' + \
|
| 150 |
+
'Urlaub in Oberschwaben\n' + \
|
| 151 |
+
'Künstliche Intelligenz für das Allgäu\n' + \
|
| 152 |
+
'Künstliche Intelligenz für Oberschwaben\n' + \
|
| 153 |
+
'Data Science für Oberschwaben\n' + \
|
| 154 |
+
'Data Science und Machine Learning\n' + \
|
| 155 |
+
'Machine Learning für das Allgäu'
|
| 156 |
+
|
| 157 |
+
string = st.text_area('', value=text_input, height=275)
|
| 158 |
+
text = string.split('\n')
|
| 159 |
+
|
| 160 |
+
if st.button('Modell trainieren und Wort-Vektoren darstellen'):
|
| 161 |
+
with st.spinner('Der Fit-Prozess kann einige Sekunden dauern ...'):
|
| 162 |
+
|
| 163 |
+
vectorizer = tf.keras.layers.TextVectorization(
|
| 164 |
+
max_tokens=1000, output_sequence_length=7)
|
| 165 |
+
|
| 166 |
+
vectorizer.adapt(text)
|
| 167 |
+
|
| 168 |
+
def generator():
|
| 169 |
+
while True:
|
| 170 |
+
x = vectorizer(text)
|
| 171 |
+
mask = tf.reduce_max(x)+1
|
| 172 |
+
|
| 173 |
+
lengths = tf.argmin(x, axis=1)
|
| 174 |
+
lengths = tf.cast(lengths, tf.float32)
|
| 175 |
+
|
| 176 |
+
masks = tf.random.uniform(shape=(x.shape[0],), minval=0, maxval=lengths)
|
| 177 |
+
masks = tf.cast(masks, tf.int32)
|
| 178 |
+
|
| 179 |
+
masks = tf.one_hot(masks, x.shape[1], dtype=tf.int32)
|
| 180 |
+
masks = tf.cast(masks, tf.bool)
|
| 181 |
+
|
| 182 |
+
y = x[masks]
|
| 183 |
+
masks = tf.cast(masks, tf.int64)
|
| 184 |
+
x = x * (1-masks) + mask * masks
|
| 185 |
+
yield x, y
|
| 186 |
+
|
| 187 |
+
# data = tf.data.Dataset.from_tensor_slices(vectorizer(text),vectorizer(text))
|
| 188 |
+
# data = data.map(masking_generator)
|
| 189 |
+
model = tf.keras.models.Sequential()
|
| 190 |
+
|
| 191 |
+
model.add(tf.keras.layers.Embedding(vectorizer.vocabulary_size()+1, 3))
|
| 192 |
+
|
| 193 |
+
model.add(tf.keras.layers.LSTM(100, return_sequences=False, activation='sigmoid'))
|
| 194 |
+
model.add(tf.keras.layers.Dense(vectorizer.vocabulary_size(), activation='softmax'))
|
| 195 |
+
|
| 196 |
+
model.summary()
|
| 197 |
+
|
| 198 |
+
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
|
| 199 |
+
metrics=['accuracy'])
|
| 200 |
+
|
| 201 |
+
lr_reduce = tf.keras.callbacks.ReduceLROnPlateau(
|
| 202 |
+
monitor='loss', patience=500, min_lr=1e-6)
|
| 203 |
+
model.fit(generator(), steps_per_epoch=1,
|
| 204 |
+
epochs=3000, callbacks=lr_reduce, verbose=False)
|
| 205 |
+
|
| 206 |
+
fig = plt.figure(facecolor=cb, figsize=(7, 7))
|
| 207 |
+
ax = fig.add_subplot()
|
| 208 |
+
ax.tick_params(color=w, labelcolor=w, labelsize=12)
|
| 209 |
+
ax.set_facecolor(cb)
|
| 210 |
+
|
| 211 |
+
embed_model = tf.keras.models.Model(model.input, model.layers[0].output)
|
| 212 |
+
X_embed = embed_model(vectorizer(vectorizer.get_vocabulary(
|
| 213 |
+
include_special_tokens=False)))[:, 0, :]
|
| 214 |
+
|
| 215 |
+
# 1. Dimension der Wort-Vektoren auf X-Achse,
|
| 216 |
+
# 2. Dimension auf y-Achse, 3. auf die Z-Achse abbilden
|
| 217 |
+
ax.scatter(X_embed[:, 0], X_embed[:, 1],
|
| 218 |
+
color=blue)
|
| 219 |
+
for i in range(vectorizer.vocabulary_size()-2):
|
| 220 |
+
ax.text(X_embed[i, 0], X_embed[i, 1],
|
| 221 |
+
vectorizer.get_vocabulary(include_special_tokens=False)[i],
|
| 222 |
+
color=w)
|
| 223 |
+
|
| 224 |
+
ax.set_ylim(-2, 2)
|
| 225 |
+
ax.set_xlim(-2, 2)
|
| 226 |
+
|
| 227 |
+
ax.set_xticks([-2, -1, 0, 1, 2])
|
| 228 |
+
ax.set_yticks([-2, -1, 0, 1, 2])
|
| 229 |
+
|
| 230 |
+
ax.spines['bottom'].set_color(w)
|
| 231 |
+
ax.spines['top'].set_color(w)
|
| 232 |
+
ax.spines['right'].set_color(w)
|
| 233 |
+
ax.spines['left'].set_color(w)
|
| 234 |
+
|
| 235 |
+
ax.set_xlabel('Dimension 1', color=w, fontsize=15, labelpad=10)
|
| 236 |
+
ax.set_ylabel('Dimension 2', color=w, fontsize=15, labelpad=10)
|
| 237 |
+
|
| 238 |
+
st.pyplot(fig)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
# %%
|
| 242 |
+
with tab3:
|
| 243 |
+
st.header("An owl")
|