Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,744 Bytes
743ec89 4d0b859 518f93e 41a8e71 743ec89 41a8e71 743ec89 41a8e71 0eaedb3 41a8e71 743ec89 41a8e71 4d0b859 41a8e71 4d0b859 743ec89 41a8e71 743ec89 41a8e71 4d0b859 743ec89 41a8e71 2940841 41a8e71 2940841 41a8e71 4d0b859 41a8e71 2940841 41a8e71 2940841 41a8e71 4d0b859 2940841 41a8e71 743ec89 41a8e71 743ec89 41a8e71 4d0b859 743ec89 41a8e71 4d0b859 41a8e71 7396944 41a8e71 4d0b859 41a8e71 743ec89 2940841 743ec89 2940841 4d0b859 41a8e71 2940841 41a8e71 743ec89 4d0b859 743ec89 41a8e71 2940841 4d0b859 41a8e71 4d0b859 41a8e71 743ec89 41a8e71 743ec89 4d0b859 743ec89 41a8e71 743ec89 41a8e71 0eaedb3 41a8e71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
from mosaic import Mosaic
import spaces
import traceback
# Maximum number of model textboxes
MAX_MODELS = 10
GPT_CONFIG_MODELS = [
"openai-community/gpt2-large",
"openai-community/gpt2-medium",
"openai-community/gpt2"
]
Falcon_CONFIG_MODELS = [
"tiiuae/Falcon3-10B-Base",
"tiiuae/Falcon3-7B-Instruct",
"tiiuae/Falcon3-7B-Base"
]
# Increase model slots
def update_textboxes(n_visible):
if n_visible < MAX_MODELS:
n_visible += 1
tb_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
return (n_visible, *tb_updates)
# Decrease model slots and clear removed entries
def remove_textboxes(n_visible):
old = n_visible
if n_visible > 2:
n_visible -= 1
tb_updates = []
for i in range(MAX_MODELS):
if i < n_visible:
tb_updates.append(gr.update(visible=True))
else:
tb_updates.append(gr.update(visible=False, value=""))
return (n_visible, *tb_updates)
def apply_config1():
"""
Returns:
- new n_visible (number of boxes to show)
- new values & visibility for each model textbox
- new visibility for each Load button & status box
"""
n_vis = len(GPT_CONFIG_MODELS)
tb_updates = []
for i in range(MAX_MODELS):
if i < n_vis:
# show this slot, set its value from CONFIG_MODELS
tb_updates.append(gr.update(visible=True, value=GPT_CONFIG_MODELS[i]))
else:
# hide all others
tb_updates.append(gr.update(visible=False, value=""))
# Return in the same shape as your update_textboxes/remove_textboxes:
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
return (n_vis, *tb_updates)
def apply_config2():
"""
Returns:
- new n_visible (number of boxes to show)
- new values & visibility for each model textbox
- new visibility for each Load button & status box
"""
n_vis = len(Falcon_CONFIG_MODELS)
tb_updates = []
for i in range(MAX_MODELS):
if i < n_vis:
# show this slot, set its value from CONFIG_MODELS
tb_updates.append(gr.update(visible=True, value=Falcon_CONFIG_MODELS[i]))
else:
# hide all others
tb_updates.append(gr.update(visible=False, value=""))
# Return in the same shape as your update_textboxes/remove_textboxes:
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
return (n_vis, *tb_updates)
@spaces.GPU()
def run_scoring(input_text, *args):
"""
args: first MAX_MODELS entries are model paths, followed by threshold_choice and custom_threshold
"""
try:
# unpack
models = [m.strip() for m in args[:MAX_MODELS] if m.strip()]
threshold_choice = args[MAX_MODELS]
custom_threshold = args[MAX_MODELS+1]
if len(models) < 2:
return "Please enter at least two model paths.", None, None
threshold = 0.0 if threshold_choice == "default" else custom_threshold
mosaic_instance = Mosaic(model_name_or_paths=models, one_model_mode=False)
final_score = mosaic_instance.compute_end_score(input_text)
msg = "This text was probably generated." if final_score < threshold else "This text is likely human-written."
return msg, final_score, threshold
except Exception as e:
tb = traceback.format_exc()
return f"Error: {e}\n{tb}", None, None
# Build Blocks UI
demo = gr.Blocks()
with demo:
gr.Markdown("# MOSAIC Scoring App")
with gr.Row():
input_text = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text")
with gr.Column():
gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**")
gr.Markdown("### Model Paths (at least 2 required)")
n_models_state = gr.State(4)
model_inputs = []
for i in range(1, MAX_MODELS+1):
with gr.Row():
tb = gr.Textbox(label=f"Model {i} Path", value="" if i > 4 else None, visible=(i <= 4))
model_inputs.append(tb)
with gr.Row():
plus = gr.Button("Add model slot", elem_id="plus_button")
minus = gr.Button("Remove model slot", elem_id="minus_button")
config1_btn = gr.Button("Try Basic gpt Configuration")
plus.click(
fn=update_textboxes,
inputs=n_models_state,
outputs=[n_models_state, *model_inputs]
)
minus.click(
fn=remove_textboxes,
inputs=n_models_state,
outputs=[n_models_state, *model_inputs]
)
config1_btn.click(
fn=apply_config1,
inputs=None,
outputs=[
n_models_state,
*model_inputs
]
)
with gr.Row():
threshold_choice = gr.Radio(choices=["default", "custom"], value="default", label="Threshold Choice")
custom_threshold = gr.Number(value=0.0, label="Custom Threshold (if 'custom' selected)")
with gr.Row():
output_message = gr.Textbox(label="Result Message")
output_score = gr.Number(label="Final Score")
output_threshold = gr.Number(label="Threshold Used")
gr.Markdown("**⚠️ All models need to be loaded for scoring, this can take time**")
run_button = gr.Button("Run Scoring")
run_button.click(
fn=run_scoring,
inputs=[input_text, *model_inputs, threshold_choice, custom_threshold],
outputs=[output_message, output_score, output_threshold]
)
# Launch
demo.queue()
demo.launch() |