Spaces:
Sleeping
Sleeping
Commit
·
4d0b859
1
Parent(s):
7396944
Issues with ZeroGPU
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
from mosaic import Mosaic
|
3 |
import spaces
|
4 |
import traceback
|
5 |
-
from transformers import AutoModelForCausalLM
|
6 |
-
import torch
|
7 |
|
8 |
# Maximum number of model textboxes
|
9 |
MAX_MODELS = 10
|
@@ -28,9 +26,7 @@ def update_textboxes(n_visible):
|
|
28 |
if n_visible < MAX_MODELS:
|
29 |
n_visible += 1
|
30 |
tb_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
|
31 |
-
|
32 |
-
status_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
|
33 |
-
return (n_visible, *tb_updates, *btn_updates, *status_updates)
|
34 |
|
35 |
# Decrease model slots and clear removed entries
|
36 |
def remove_textboxes(n_visible):
|
@@ -41,17 +37,13 @@ def remove_textboxes(n_visible):
|
|
41 |
# Remove cached models for slots now hidden
|
42 |
for idx in range(new, old):
|
43 |
LOADED_MODELS.pop(idx+1, None)
|
44 |
-
tb_updates
|
45 |
for i in range(MAX_MODELS):
|
46 |
if i < n_visible:
|
47 |
tb_updates.append(gr.update(visible=True))
|
48 |
-
btn_updates.append(gr.update(visible=True))
|
49 |
-
status_updates.append(gr.update(visible=True))
|
50 |
else:
|
51 |
tb_updates.append(gr.update(visible=False, value=""))
|
52 |
-
|
53 |
-
status_updates.append(gr.update(visible=False, value="Not loaded"))
|
54 |
-
return (n_visible, *tb_updates, *btn_updates, *status_updates)
|
55 |
|
56 |
def apply_config1():
|
57 |
"""
|
@@ -61,23 +53,19 @@ def apply_config1():
|
|
61 |
- new visibility for each Load button & status box
|
62 |
"""
|
63 |
n_vis = len(GPT_CONFIG_MODELS)
|
64 |
-
tb_updates
|
65 |
|
66 |
for i in range(MAX_MODELS):
|
67 |
if i < n_vis:
|
68 |
# show this slot, set its value from CONFIG_MODELS
|
69 |
tb_updates.append(gr.update(visible=True, value=GPT_CONFIG_MODELS[i]))
|
70 |
-
btn_updates.append(gr.update(visible=True))
|
71 |
-
status_updates.append(gr.update(visible=True, value="Not loaded"))
|
72 |
else:
|
73 |
# hide all others
|
74 |
tb_updates.append(gr.update(visible=False, value=""))
|
75 |
-
btn_updates.append(gr.update(visible=False))
|
76 |
-
status_updates.append(gr.update(visible=False, value="Not loaded"))
|
77 |
|
78 |
# Return in the same shape as your update_textboxes/remove_textboxes:
|
79 |
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
|
80 |
-
return (n_vis, *tb_updates
|
81 |
|
82 |
def apply_config2():
|
83 |
"""
|
@@ -87,53 +75,20 @@ def apply_config2():
|
|
87 |
- new visibility for each Load button & status box
|
88 |
"""
|
89 |
n_vis = len(Falcon_CONFIG_MODELS)
|
90 |
-
tb_updates
|
91 |
|
92 |
for i in range(MAX_MODELS):
|
93 |
if i < n_vis:
|
94 |
# show this slot, set its value from CONFIG_MODELS
|
95 |
tb_updates.append(gr.update(visible=True, value=Falcon_CONFIG_MODELS[i]))
|
96 |
-
btn_updates.append(gr.update(visible=True))
|
97 |
-
status_updates.append(gr.update(visible=True, value="Not loaded"))
|
98 |
else:
|
99 |
# hide all others
|
100 |
tb_updates.append(gr.update(visible=False, value=""))
|
101 |
-
btn_updates.append(gr.update(visible=False))
|
102 |
-
status_updates.append(gr.update(visible=False, value="Not loaded"))
|
103 |
|
104 |
# Return in the same shape as your update_textboxes/remove_textboxes:
|
105 |
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
|
106 |
-
return (n_vis, *tb_updates
|
107 |
|
108 |
-
# Load a single model and report status
|
109 |
-
@spaces.GPU()
|
110 |
-
def load_single_model(model_path, use_bfloat16=True):
|
111 |
-
try:
|
112 |
-
repo = model_path
|
113 |
-
if not repo:
|
114 |
-
return "Error: No path provided"
|
115 |
-
if repo in LOADED_MODELS:
|
116 |
-
return "Loaded"
|
117 |
-
# actual load; may raise
|
118 |
-
model = AutoModelForCausalLM.from_pretrained(
|
119 |
-
repo,
|
120 |
-
device_map="auto",
|
121 |
-
trust_remote_code=True,
|
122 |
-
torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32,
|
123 |
-
)
|
124 |
-
model.eval()
|
125 |
-
LOADED_MODELS[repo] = model
|
126 |
-
return "Loaded"
|
127 |
-
except Exception as e:
|
128 |
-
return f"Error loading model: {e}"
|
129 |
-
|
130 |
-
# Determine interactive state for Run button
|
131 |
-
def check_all_loaded(n_visible, *status_texts):
|
132 |
-
# status_texts are strings: "Loaded" indicates success
|
133 |
-
needed = status_texts[:n_visible]
|
134 |
-
if all(s == "Loaded" for s in needed):
|
135 |
-
return gr.update(interactive=True)
|
136 |
-
return gr.update(interactive=False)
|
137 |
|
138 |
@spaces.GPU()
|
139 |
def run_scoring(input_text, *args):
|
@@ -148,7 +103,7 @@ def run_scoring(input_text, *args):
|
|
148 |
if len(models) < 2:
|
149 |
return "Please enter at least two model paths.", None, None
|
150 |
threshold = 0.0 if threshold_choice == "default" else custom_threshold
|
151 |
-
mosaic_instance = Mosaic(model_name_or_paths=models, one_model_mode=False
|
152 |
final_score = mosaic_instance.compute_end_score(input_text)
|
153 |
msg = "This text was probably generated." if final_score < threshold else "This text is likely human-written."
|
154 |
return msg, final_score, threshold
|
@@ -166,20 +121,11 @@ with demo:
|
|
166 |
gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**")
|
167 |
gr.Markdown("### Model Paths (at least 2 required)")
|
168 |
n_models_state = gr.State(4)
|
169 |
-
model_inputs
|
170 |
for i in range(1, MAX_MODELS+1):
|
171 |
with gr.Row():
|
172 |
tb = gr.Textbox(label=f"Model {i} Path", value="" if i > 4 else None, visible=(i <= 4))
|
173 |
-
btn = gr.Button("Load", elem_id=f"load_{i}", visible=(i <= 4))
|
174 |
-
status = gr.Textbox(label="Loading status", value="Not loaded", interactive=False, visible=(i <= 4))
|
175 |
-
btn.click(
|
176 |
-
fn=load_single_model,
|
177 |
-
inputs=[tb, gr.State(i)],
|
178 |
-
outputs=status
|
179 |
-
)
|
180 |
model_inputs.append(tb)
|
181 |
-
load_buttons.append(btn)
|
182 |
-
status_boxes.append(status)
|
183 |
with gr.Row():
|
184 |
plus = gr.Button("Add model slot", elem_id="plus_button")
|
185 |
minus = gr.Button("Remove model slot", elem_id="minus_button")
|
@@ -188,31 +134,27 @@ with demo:
|
|
188 |
plus.click(
|
189 |
fn=update_textboxes,
|
190 |
inputs=n_models_state,
|
191 |
-
outputs=[n_models_state, *model_inputs
|
192 |
)
|
193 |
minus.click(
|
194 |
fn=remove_textboxes,
|
195 |
inputs=n_models_state,
|
196 |
-
outputs=[n_models_state, *model_inputs
|
197 |
)
|
198 |
config1_btn.click(
|
199 |
fn=apply_config1,
|
200 |
-
inputs=None,
|
201 |
-
outputs=[
|
202 |
-
n_models_state,
|
203 |
-
*model_inputs
|
204 |
-
*load_buttons, # 3️⃣ your list of 10 Load Buttons
|
205 |
-
*status_boxes # 4️⃣ your list of 10 Status Textboxes
|
206 |
]
|
207 |
)
|
208 |
config2_btn.click(
|
209 |
fn=apply_config2,
|
210 |
-
inputs=None,
|
211 |
-
outputs=[
|
212 |
-
n_models_state,
|
213 |
-
*model_inputs
|
214 |
-
*load_buttons, # 3️⃣ your list of 10 Load Buttons
|
215 |
-
*status_boxes # 4️⃣ your list of 10 Status Textboxes
|
216 |
]
|
217 |
)
|
218 |
with gr.Row():
|
@@ -222,20 +164,8 @@ with demo:
|
|
222 |
output_message = gr.Textbox(label="Result Message")
|
223 |
output_score = gr.Number(label="Final Score")
|
224 |
output_threshold = gr.Number(label="Threshold Used")
|
225 |
-
gr.Markdown("**⚠️ All models need to be loaded
|
226 |
-
run_button = gr.Button("Run Scoring"
|
227 |
-
# Enable Run button when all statuses reflect "Loaded"
|
228 |
-
for status in status_boxes:
|
229 |
-
status.change(
|
230 |
-
fn=check_all_loaded,
|
231 |
-
inputs=[n_models_state, *status_boxes],
|
232 |
-
outputs=run_button
|
233 |
-
)
|
234 |
-
n_models_state.change(
|
235 |
-
fn=check_all_loaded,
|
236 |
-
inputs=[n_models_state, *status_boxes],
|
237 |
-
outputs=run_button
|
238 |
-
)
|
239 |
run_button.click(
|
240 |
fn=run_scoring,
|
241 |
inputs=[input_text, *model_inputs, threshold_choice, custom_threshold],
|
|
|
1 |
import gradio as gr
|
2 |
+
from mosaic import Mosaic
|
3 |
import spaces
|
4 |
import traceback
|
|
|
|
|
5 |
|
6 |
# Maximum number of model textboxes
|
7 |
MAX_MODELS = 10
|
|
|
26 |
if n_visible < MAX_MODELS:
|
27 |
n_visible += 1
|
28 |
tb_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
|
29 |
+
return (n_visible, *tb_updates)
|
|
|
|
|
30 |
|
31 |
# Decrease model slots and clear removed entries
|
32 |
def remove_textboxes(n_visible):
|
|
|
37 |
# Remove cached models for slots now hidden
|
38 |
for idx in range(new, old):
|
39 |
LOADED_MODELS.pop(idx+1, None)
|
40 |
+
tb_updates = []
|
41 |
for i in range(MAX_MODELS):
|
42 |
if i < n_visible:
|
43 |
tb_updates.append(gr.update(visible=True))
|
|
|
|
|
44 |
else:
|
45 |
tb_updates.append(gr.update(visible=False, value=""))
|
46 |
+
return (n_visible, *tb_updates)
|
|
|
|
|
47 |
|
48 |
def apply_config1():
|
49 |
"""
|
|
|
53 |
- new visibility for each Load button & status box
|
54 |
"""
|
55 |
n_vis = len(GPT_CONFIG_MODELS)
|
56 |
+
tb_updates = []
|
57 |
|
58 |
for i in range(MAX_MODELS):
|
59 |
if i < n_vis:
|
60 |
# show this slot, set its value from CONFIG_MODELS
|
61 |
tb_updates.append(gr.update(visible=True, value=GPT_CONFIG_MODELS[i]))
|
|
|
|
|
62 |
else:
|
63 |
# hide all others
|
64 |
tb_updates.append(gr.update(visible=False, value=""))
|
|
|
|
|
65 |
|
66 |
# Return in the same shape as your update_textboxes/remove_textboxes:
|
67 |
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
|
68 |
+
return (n_vis, *tb_updates)
|
69 |
|
70 |
def apply_config2():
|
71 |
"""
|
|
|
75 |
- new visibility for each Load button & status box
|
76 |
"""
|
77 |
n_vis = len(Falcon_CONFIG_MODELS)
|
78 |
+
tb_updates = []
|
79 |
|
80 |
for i in range(MAX_MODELS):
|
81 |
if i < n_vis:
|
82 |
# show this slot, set its value from CONFIG_MODELS
|
83 |
tb_updates.append(gr.update(visible=True, value=Falcon_CONFIG_MODELS[i]))
|
|
|
|
|
84 |
else:
|
85 |
# hide all others
|
86 |
tb_updates.append(gr.update(visible=False, value=""))
|
|
|
|
|
87 |
|
88 |
# Return in the same shape as your update_textboxes/remove_textboxes:
|
89 |
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
|
90 |
+
return (n_vis, *tb_updates)
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
@spaces.GPU()
|
94 |
def run_scoring(input_text, *args):
|
|
|
103 |
if len(models) < 2:
|
104 |
return "Please enter at least two model paths.", None, None
|
105 |
threshold = 0.0 if threshold_choice == "default" else custom_threshold
|
106 |
+
mosaic_instance = Mosaic(model_name_or_paths=models, one_model_mode=False)
|
107 |
final_score = mosaic_instance.compute_end_score(input_text)
|
108 |
msg = "This text was probably generated." if final_score < threshold else "This text is likely human-written."
|
109 |
return msg, final_score, threshold
|
|
|
121 |
gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**")
|
122 |
gr.Markdown("### Model Paths (at least 2 required)")
|
123 |
n_models_state = gr.State(4)
|
124 |
+
model_inputs = []
|
125 |
for i in range(1, MAX_MODELS+1):
|
126 |
with gr.Row():
|
127 |
tb = gr.Textbox(label=f"Model {i} Path", value="" if i > 4 else None, visible=(i <= 4))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
model_inputs.append(tb)
|
|
|
|
|
129 |
with gr.Row():
|
130 |
plus = gr.Button("Add model slot", elem_id="plus_button")
|
131 |
minus = gr.Button("Remove model slot", elem_id="minus_button")
|
|
|
134 |
plus.click(
|
135 |
fn=update_textboxes,
|
136 |
inputs=n_models_state,
|
137 |
+
outputs=[n_models_state, *model_inputs]
|
138 |
)
|
139 |
minus.click(
|
140 |
fn=remove_textboxes,
|
141 |
inputs=n_models_state,
|
142 |
+
outputs=[n_models_state, *model_inputs]
|
143 |
)
|
144 |
config1_btn.click(
|
145 |
fn=apply_config1,
|
146 |
+
inputs=None,
|
147 |
+
outputs=[
|
148 |
+
n_models_state,
|
149 |
+
*model_inputs
|
|
|
|
|
150 |
]
|
151 |
)
|
152 |
config2_btn.click(
|
153 |
fn=apply_config2,
|
154 |
+
inputs=None,
|
155 |
+
outputs=[
|
156 |
+
n_models_state,
|
157 |
+
*model_inputs
|
|
|
|
|
158 |
]
|
159 |
)
|
160 |
with gr.Row():
|
|
|
164 |
output_message = gr.Textbox(label="Result Message")
|
165 |
output_score = gr.Number(label="Final Score")
|
166 |
output_threshold = gr.Number(label="Threshold Used")
|
167 |
+
gr.Markdown("**⚠️ All models need to be loaded for scoring, this can take time**")
|
168 |
+
run_button = gr.Button("Run Scoring")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
run_button.click(
|
170 |
fn=run_scoring,
|
171 |
inputs=[input_text, *model_inputs, threshold_choice, custom_threshold],
|
mosaic.py
CHANGED
@@ -57,41 +57,28 @@ class Mosaic(object):
|
|
57 |
unigram: Optional[str] = None,
|
58 |
custom_config: Optional[List[bool]] = None,
|
59 |
stupid_mode: bool = False,
|
60 |
-
one_model_mode: bool = False
|
61 |
-
|
62 |
-
loaded_models: Optional[Dict[str, AutoModelForCausalLM]] = None,
|
63 |
-
) -> None:
|
64 |
"""
|
65 |
If `loaded_models` is provided, re-use any entries matching
|
66 |
model_name_or_paths; otherwise load and optionally register
|
67 |
into that dict.
|
68 |
"""
|
69 |
self.models = []
|
70 |
-
# ensure we have a dict to cache into if passed
|
71 |
-
cache = loaded_models if loaded_models is not None else {}
|
72 |
|
73 |
for model_name_or_path in model_name_or_paths:
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
trust_remote_code=True,
|
84 |
-
torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32,
|
85 |
-
)
|
86 |
-
model.eval()
|
87 |
-
# cache for reuse
|
88 |
-
if loaded_models is not None:
|
89 |
-
cache[model_name_or_path] = model
|
90 |
self.models.append(model)
|
91 |
print(f"Loaded model: {model_name_or_path}")
|
92 |
|
93 |
-
# store optional references
|
94 |
-
self.loaded_models = cache
|
95 |
self.one_model_mode = one_model_mode
|
96 |
|
97 |
if stupid_mode:
|
|
|
57 |
unigram: Optional[str] = None,
|
58 |
custom_config: Optional[List[bool]] = None,
|
59 |
stupid_mode: bool = False,
|
60 |
+
one_model_mode: bool = False
|
61 |
+
) -> None:
|
|
|
|
|
62 |
"""
|
63 |
If `loaded_models` is provided, re-use any entries matching
|
64 |
model_name_or_paths; otherwise load and optionally register
|
65 |
into that dict.
|
66 |
"""
|
67 |
self.models = []
|
|
|
|
|
68 |
|
69 |
for model_name_or_path in model_name_or_paths:
|
70 |
+
# load from pre-trained hub or path
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(
|
72 |
+
model_name_or_path,
|
73 |
+
device_map="auto",
|
74 |
+
trust_remote_code=True,
|
75 |
+
torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32,
|
76 |
+
)
|
77 |
+
model.eval()
|
78 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
self.models.append(model)
|
80 |
print(f"Loaded model: {model_name_or_path}")
|
81 |
|
|
|
|
|
82 |
self.one_model_mode = one_model_mode
|
83 |
|
84 |
if stupid_mode:
|