Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
41a8e71
1
Parent(s):
f3c1907
added default configs
Browse files
app.py
CHANGED
@@ -1,124 +1,244 @@
|
|
1 |
import gradio as gr
|
2 |
from mosaic import Mosaic # adjust import as needed
|
3 |
import spaces
|
4 |
-
|
|
|
|
|
5 |
|
6 |
# Maximum number of model textboxes
|
7 |
MAX_MODELS = 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def update_textboxes(n_visible):
|
10 |
-
"""
|
11 |
-
Given the current visible count, increments it by 1 (up to MAX_MODELS)
|
12 |
-
and returns updated visibility settings for all model textboxes.
|
13 |
-
"""
|
14 |
if n_visible < MAX_MODELS:
|
15 |
n_visible += 1
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
for i in range(MAX_MODELS):
|
19 |
if i < n_visible:
|
20 |
-
|
|
|
|
|
21 |
else:
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
def remove_textboxes(n_visible):
|
27 |
"""
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
"""
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
for i in range(MAX_MODELS):
|
36 |
-
if i <
|
37 |
-
#
|
38 |
-
|
|
|
|
|
39 |
else:
|
40 |
-
# hide
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
def run_scoring(input_text, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, threshold_choice, custom_threshold):
|
46 |
"""
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
"""
|
50 |
-
|
51 |
-
|
52 |
-
if m.strip() != "":
|
53 |
-
model_paths.append(m.strip())
|
54 |
-
if len(model_paths) < 2:
|
55 |
-
return "Please enter at least two model paths.", None, None
|
56 |
-
# Choose threshold value
|
57 |
-
if threshold_choice == "default":
|
58 |
-
threshold = 0.0
|
59 |
-
elif threshold_choice == "raid":
|
60 |
-
threshold = 0.23
|
61 |
-
elif threshold_choice == "custom":
|
62 |
-
threshold = custom_threshold
|
63 |
-
else:
|
64 |
-
threshold = 0.0
|
65 |
-
# Instantiate the Mosaic class with the selected model paths.
|
66 |
-
mosaic_instance = Mosaic(model_name_or_paths=model_paths, one_model_mode=False)
|
67 |
-
final_score = mosaic_instance.compute_end_score(input_text)
|
68 |
-
if final_score < threshold:
|
69 |
-
result_message = "This text was probably generated."
|
70 |
-
else:
|
71 |
-
result_message = "This text is likely human-written."
|
72 |
-
return result_message, final_score, threshold
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
gr.Markdown("# MOSAIC Scoring App")
|
76 |
with gr.Row():
|
77 |
input_text = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text")
|
78 |
with gr.Column():
|
79 |
gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**")
|
80 |
gr.Markdown("### Model Paths (at least 2 required)")
|
81 |
-
gr.Markdown("Order matters for model 1 only, the Reference model. Please use the one with the best perplexity on human texts. (The largest LLM if applicable.) GPT2 models are enough to detect easy prompts from chatgpt.")
|
82 |
-
# State to keep track of the number of visible textboxes (starting with 2)
|
83 |
n_models_state = gr.State(4)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
with gr.Row():
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
101 |
fn=update_textboxes,
|
102 |
inputs=n_models_state,
|
103 |
-
outputs=[n_models_state,
|
104 |
)
|
105 |
-
|
106 |
fn=remove_textboxes,
|
107 |
inputs=n_models_state,
|
108 |
-
outputs=[n_models_state,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
with gr.Row():
|
111 |
-
threshold_choice = gr.Radio(choices=["default", "
|
112 |
custom_threshold = gr.Number(value=0.0, label="Custom Threshold (if 'custom' selected)")
|
113 |
with gr.Row():
|
114 |
output_message = gr.Textbox(label="Result Message")
|
115 |
output_score = gr.Number(label="Final Score")
|
116 |
output_threshold = gr.Number(label="Threshold Used")
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
run_button.click(
|
119 |
fn=run_scoring,
|
120 |
-
inputs=[input_text,
|
121 |
outputs=[output_message, output_score, output_threshold]
|
122 |
)
|
123 |
-
|
124 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from mosaic import Mosaic # adjust import as needed
|
3 |
import spaces
|
4 |
+
import traceback
|
5 |
+
from transformers import AutoModelForCausalLM
|
6 |
+
import torch
|
7 |
|
8 |
# Maximum number of model textboxes
|
9 |
MAX_MODELS = 10
|
10 |
+
# Cache for loaded models to reuse
|
11 |
+
LOADED_MODELS = {}
|
12 |
+
|
13 |
+
GPT_CONFIG_MODELS = [
|
14 |
+
"openai-community/gpt2-large",
|
15 |
+
"openai-community/gpt2-medium",
|
16 |
+
"openai-community/gpt2"
|
17 |
+
]
|
18 |
|
19 |
+
Falcon_CONFIG_MODELS = [
|
20 |
+
"tiiuae/Falcon3-10B-Base",
|
21 |
+
"tiiuae/Falcon3-10B-Instruct",
|
22 |
+
"tiiuae/Falcon3-7B-Base",
|
23 |
+
"tiiuae/Falcon3-7B-Instruct"
|
24 |
+
]
|
25 |
+
|
26 |
+
# Increase model slots
|
27 |
def update_textboxes(n_visible):
|
|
|
|
|
|
|
|
|
28 |
if n_visible < MAX_MODELS:
|
29 |
n_visible += 1
|
30 |
+
tb_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
|
31 |
+
btn_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
|
32 |
+
status_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
|
33 |
+
return (n_visible, *tb_updates, *btn_updates, *status_updates)
|
34 |
+
|
35 |
+
# Decrease model slots and clear removed entries
|
36 |
+
def remove_textboxes(n_visible):
|
37 |
+
old = n_visible
|
38 |
+
if n_visible > 2:
|
39 |
+
n_visible -= 1
|
40 |
+
new = n_visible
|
41 |
+
# Remove cached models for slots now hidden
|
42 |
+
for idx in range(new, old):
|
43 |
+
LOADED_MODELS.pop(idx+1, None)
|
44 |
+
tb_updates, btn_updates, status_updates = [], [], []
|
45 |
for i in range(MAX_MODELS):
|
46 |
if i < n_visible:
|
47 |
+
tb_updates.append(gr.update(visible=True))
|
48 |
+
btn_updates.append(gr.update(visible=True))
|
49 |
+
status_updates.append(gr.update(visible=True))
|
50 |
else:
|
51 |
+
tb_updates.append(gr.update(visible=False, value=""))
|
52 |
+
btn_updates.append(gr.update(visible=False))
|
53 |
+
status_updates.append(gr.update(visible=False, value="Not loaded"))
|
54 |
+
return (n_visible, *tb_updates, *btn_updates, *status_updates)
|
55 |
|
56 |
+
def apply_config1():
|
|
|
57 |
"""
|
58 |
+
Returns:
|
59 |
+
- new n_visible (number of boxes to show)
|
60 |
+
- new values & visibility for each model textbox
|
61 |
+
- new visibility for each Load button & status box
|
62 |
"""
|
63 |
+
n_vis = len(GPT_CONFIG_MODELS)
|
64 |
+
tb_updates, btn_updates, status_updates = [], [], []
|
65 |
+
|
66 |
for i in range(MAX_MODELS):
|
67 |
+
if i < n_vis:
|
68 |
+
# show this slot, set its value from CONFIG_MODELS
|
69 |
+
tb_updates.append(gr.update(visible=True, value=GPT_CONFIG_MODELS[i]))
|
70 |
+
btn_updates.append(gr.update(visible=True))
|
71 |
+
status_updates.append(gr.update(visible=True, value="Not loaded"))
|
72 |
else:
|
73 |
+
# hide all others
|
74 |
+
tb_updates.append(gr.update(visible=False, value=""))
|
75 |
+
btn_updates.append(gr.update(visible=False))
|
76 |
+
status_updates.append(gr.update(visible=False, value="Not loaded"))
|
77 |
+
|
78 |
+
# Return in the same shape as your update_textboxes/remove_textboxes:
|
79 |
+
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
|
80 |
+
return (n_vis, *tb_updates, *btn_updates, *status_updates)
|
81 |
|
82 |
+
def apply_config2():
|
|
|
83 |
"""
|
84 |
+
Returns:
|
85 |
+
- new n_visible (number of boxes to show)
|
86 |
+
- new values & visibility for each model textbox
|
87 |
+
- new visibility for each Load button & status box
|
88 |
"""
|
89 |
+
n_vis = len(Falcon_CONFIG_MODELS)
|
90 |
+
tb_updates, btn_updates, status_updates = [], [], []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
for i in range(MAX_MODELS):
|
93 |
+
if i < n_vis:
|
94 |
+
# show this slot, set its value from CONFIG_MODELS
|
95 |
+
tb_updates.append(gr.update(visible=True, value=Falcon_CONFIG_MODELS[i]))
|
96 |
+
btn_updates.append(gr.update(visible=True))
|
97 |
+
status_updates.append(gr.update(visible=True, value="Not loaded"))
|
98 |
+
else:
|
99 |
+
# hide all others
|
100 |
+
tb_updates.append(gr.update(visible=False, value=""))
|
101 |
+
btn_updates.append(gr.update(visible=False))
|
102 |
+
status_updates.append(gr.update(visible=False, value="Not loaded"))
|
103 |
+
|
104 |
+
# Return in the same shape as your update_textboxes/remove_textboxes:
|
105 |
+
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
|
106 |
+
return (n_vis, *tb_updates, *btn_updates, *status_updates)
|
107 |
+
|
108 |
+
# Load a single model and report status
|
109 |
+
def load_single_model(model_path, use_bfloat16=True):
|
110 |
+
try:
|
111 |
+
repo = model_path
|
112 |
+
if not repo:
|
113 |
+
return "Error: No path provided"
|
114 |
+
if repo in LOADED_MODELS:
|
115 |
+
return "Loaded"
|
116 |
+
# actual load; may raise
|
117 |
+
model = AutoModelForCausalLM.from_pretrained(
|
118 |
+
repo,
|
119 |
+
device_map="auto",
|
120 |
+
trust_remote_code=True,
|
121 |
+
torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32,
|
122 |
+
)
|
123 |
+
model.eval()
|
124 |
+
LOADED_MODELS[repo] = model
|
125 |
+
return "Loaded"
|
126 |
+
except Exception as e:
|
127 |
+
return f"Error loading model: {e}"
|
128 |
+
|
129 |
+
# Determine interactive state for Run button
|
130 |
+
def check_all_loaded(n_visible, *status_texts):
|
131 |
+
# status_texts are strings: "Loaded" indicates success
|
132 |
+
needed = status_texts[:n_visible]
|
133 |
+
if all(s == "Loaded" for s in needed):
|
134 |
+
return gr.update(interactive=True)
|
135 |
+
return gr.update(interactive=False)
|
136 |
+
|
137 |
+
@spaces.GPU()
|
138 |
+
def run_scoring(input_text, *args):
|
139 |
+
"""
|
140 |
+
args: first MAX_MODELS entries are model paths, followed by threshold_choice and custom_threshold
|
141 |
+
"""
|
142 |
+
try:
|
143 |
+
# unpack
|
144 |
+
models = [m.strip() for m in args[:MAX_MODELS] if m.strip()]
|
145 |
+
threshold_choice = args[MAX_MODELS]
|
146 |
+
custom_threshold = args[MAX_MODELS+1]
|
147 |
+
if len(models) < 2:
|
148 |
+
return "Please enter at least two model paths.", None, None
|
149 |
+
threshold = 0.0 if threshold_choice == "default" else custom_threshold
|
150 |
+
mosaic_instance = Mosaic(model_name_or_paths=models, one_model_mode=False, loaded_models=LOADED_MODELS)
|
151 |
+
final_score = mosaic_instance.compute_end_score(input_text)
|
152 |
+
msg = "This text was probably generated." if final_score < threshold else "This text is likely human-written."
|
153 |
+
return msg, final_score, threshold
|
154 |
+
except Exception as e:
|
155 |
+
tb = traceback.format_exc()
|
156 |
+
return f"Error: {e}\n{tb}", None, None
|
157 |
+
|
158 |
+
# Build Blocks UI
|
159 |
+
demo = gr.Blocks()
|
160 |
+
with demo:
|
161 |
gr.Markdown("# MOSAIC Scoring App")
|
162 |
with gr.Row():
|
163 |
input_text = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text")
|
164 |
with gr.Column():
|
165 |
gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**")
|
166 |
gr.Markdown("### Model Paths (at least 2 required)")
|
|
|
|
|
167 |
n_models_state = gr.State(4)
|
168 |
+
model_inputs, load_buttons, status_boxes = [], [], []
|
169 |
+
for i in range(1, MAX_MODELS+1):
|
170 |
+
with gr.Row():
|
171 |
+
tb = gr.Textbox(label=f"Model {i} Path", value="" if i > 4 else None, visible=(i <= 4))
|
172 |
+
btn = gr.Button("Load", elem_id=f"load_{i}", visible=(i <= 4))
|
173 |
+
status = gr.Textbox(label="Loading status", value="Not loaded", interactive=False, visible=(i <= 4))
|
174 |
+
btn.click(
|
175 |
+
fn=load_single_model,
|
176 |
+
inputs=[tb, gr.State(i)],
|
177 |
+
outputs=status
|
178 |
+
)
|
179 |
+
model_inputs.append(tb)
|
180 |
+
load_buttons.append(btn)
|
181 |
+
status_boxes.append(status)
|
182 |
with gr.Row():
|
183 |
+
plus = gr.Button("Add model slot", elem_id="plus_button")
|
184 |
+
minus = gr.Button("Remove model slot", elem_id="minus_button")
|
185 |
+
config1_btn = gr.Button("Try Basic gpt Configuration")
|
186 |
+
config2_btn = gr.Button("Try Falcon models Configuration")
|
187 |
+
plus.click(
|
188 |
fn=update_textboxes,
|
189 |
inputs=n_models_state,
|
190 |
+
outputs=[n_models_state, *model_inputs, *load_buttons, *status_boxes]
|
191 |
)
|
192 |
+
minus.click(
|
193 |
fn=remove_textboxes,
|
194 |
inputs=n_models_state,
|
195 |
+
outputs=[n_models_state, *model_inputs, *load_buttons, *status_boxes]
|
196 |
+
)
|
197 |
+
config1_btn.click(
|
198 |
+
fn=apply_config1,
|
199 |
+
inputs=None, # no inputs needed
|
200 |
+
outputs=[ # must match order:
|
201 |
+
n_models_state, # 1️⃣ the new visible‑count State
|
202 |
+
*model_inputs, # 2️⃣ your list of 10 Textboxes
|
203 |
+
*load_buttons, # 3️⃣ your list of 10 Load Buttons
|
204 |
+
*status_boxes # 4️⃣ your list of 10 Status Textboxes
|
205 |
+
]
|
206 |
+
)
|
207 |
+
config2_btn.click(
|
208 |
+
fn=apply_config2,
|
209 |
+
inputs=None, # no inputs needed
|
210 |
+
outputs=[ # must match order:
|
211 |
+
n_models_state, # 1️⃣ the new visible‑count State
|
212 |
+
*model_inputs, # 2️⃣ your list of 10 Textboxes
|
213 |
+
*load_buttons, # 3️⃣ your list of 10 Load Buttons
|
214 |
+
*status_boxes # 4️⃣ your list of 10 Status Textboxes
|
215 |
+
]
|
216 |
)
|
217 |
with gr.Row():
|
218 |
+
threshold_choice = gr.Radio(choices=["default", "custom"], value="default", label="Threshold Choice")
|
219 |
custom_threshold = gr.Number(value=0.0, label="Custom Threshold (if 'custom' selected)")
|
220 |
with gr.Row():
|
221 |
output_message = gr.Textbox(label="Result Message")
|
222 |
output_score = gr.Number(label="Final Score")
|
223 |
output_threshold = gr.Number(label="Threshold Used")
|
224 |
+
gr.Markdown("**⚠️ All models need to be loaded before scoring.**")
|
225 |
+
run_button = gr.Button("Run Scoring", interactive=False)
|
226 |
+
# Enable Run button when all statuses reflect "Loaded"
|
227 |
+
for status in status_boxes:
|
228 |
+
status.change(
|
229 |
+
fn=check_all_loaded,
|
230 |
+
inputs=[n_models_state, *status_boxes],
|
231 |
+
outputs=run_button
|
232 |
+
)
|
233 |
+
n_models_state.change(
|
234 |
+
fn=check_all_loaded,
|
235 |
+
inputs=[n_models_state, *status_boxes],
|
236 |
+
outputs=run_button
|
237 |
+
)
|
238 |
run_button.click(
|
239 |
fn=run_scoring,
|
240 |
+
inputs=[input_text, *model_inputs, threshold_choice, custom_threshold],
|
241 |
outputs=[output_message, output_score, output_threshold]
|
242 |
)
|
243 |
+
# Launch
|
244 |
+
demo.launch()
|
mosaic.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import List, Optional
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import transformers
|
@@ -49,36 +49,56 @@ def apply_top_p_with_epsilon(logits: torch.Tensor, top_p: float, epsilon: float
|
|
49 |
return new_logits
|
50 |
|
51 |
class Mosaic(object):
|
52 |
-
def __init__(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
self.models = []
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
self.models.append(model)
|
71 |
print(f"Loaded model: {model_name_or_path}")
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
|
75 |
if stupid_mode:
|
76 |
self.max_iters = 0
|
77 |
else:
|
78 |
self.max_iters = 1000
|
79 |
|
80 |
-
self.one_model_mode = one_model_mode
|
81 |
-
|
82 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_paths[-1])
|
83 |
if not self.tokenizer.pad_token:
|
84 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
1 |
+
from typing import List, Optional, Dict
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import transformers
|
|
|
49 |
return new_logits
|
50 |
|
51 |
class Mosaic(object):
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
model_name_or_paths: List[str],
|
55 |
+
use_bfloat16: bool = True,
|
56 |
+
max_token_observed: int = 512,
|
57 |
+
unigram: Optional[str] = None,
|
58 |
+
custom_config: Optional[List[bool]] = None,
|
59 |
+
stupid_mode: bool = False,
|
60 |
+
one_model_mode: bool = False,
|
61 |
+
# new optional argument: preloaded models dict
|
62 |
+
loaded_models: Optional[Dict[str, AutoModelForCausalLM]] = None,
|
63 |
+
) -> None:
|
64 |
+
"""
|
65 |
+
If `loaded_models` is provided, re-use any entries matching
|
66 |
+
model_name_or_paths; otherwise load and optionally register
|
67 |
+
into that dict.
|
68 |
+
"""
|
69 |
self.models = []
|
70 |
+
# ensure we have a dict to cache into if passed
|
71 |
+
cache = loaded_models if loaded_models is not None else {}
|
72 |
+
|
73 |
+
for model_name_or_path in model_name_or_paths:
|
74 |
+
# reuse if already loaded
|
75 |
+
if loaded_models is not None and model_name_or_path in cache:
|
76 |
+
model = cache[model_name_or_path]
|
77 |
+
else:
|
78 |
+
print("Reloading a model was necessary, you probably messed up.")
|
79 |
+
# load from pre-trained hub or path
|
80 |
+
model = AutoModelForCausalLM.from_pretrained(
|
81 |
+
model_name_or_path,
|
82 |
+
device_map="auto",
|
83 |
+
trust_remote_code=True,
|
84 |
+
torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32,
|
85 |
+
)
|
86 |
+
model.eval()
|
87 |
+
# cache for reuse
|
88 |
+
if loaded_models is not None:
|
89 |
+
cache[model_name_or_path] = model
|
90 |
self.models.append(model)
|
91 |
print(f"Loaded model: {model_name_or_path}")
|
92 |
+
|
93 |
+
# store optional references
|
94 |
+
self.loaded_models = cache
|
95 |
+
self.one_model_mode = one_model_mode
|
96 |
|
97 |
if stupid_mode:
|
98 |
self.max_iters = 0
|
99 |
else:
|
100 |
self.max_iters = 1000
|
101 |
|
|
|
|
|
102 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_paths[-1])
|
103 |
if not self.tokenizer.pad_token:
|
104 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|