File size: 6,408 Bytes
fe1fc2e 467c73a 3c4de7d bd26a11 8356c3c bd26a11 467c73a fe1fc2e 644332a 8356c3c dfb65c1 4f834c9 a76c41e b1fa38c 09d364f 10edf7a 7c9ee97 92bd8e5 7c9ee97 e1ca13f 0772e8b 7c9ee97 40e10a3 305c673 8e41c14 10edf7a 152b9b0 ca65ca1 152b9b0 5d24867 bb1bff8 5d24867 152b9b0 5d24867 91fbf6f 5d24867 152b9b0 0420d34 152b9b0 5d24867 152b9b0 5d24867 de0cc6e de7666e 152b9b0 55deafd de0cc6e 9ae7fa6 d1e59aa 152b9b0 d1e59aa f9b8984 cd7cb8b f9b8984 96515be 55e669b d1e59aa 687dbd6 55e669b 43ca617 2bc8ef5 cd7cb8b de7666e 2ecb0e9 40e10a3 6a474c7 443a65d 799176a ce39389 799176a 443a65d 261a9b2 03d617b 261a9b2 9f3b8b8 4b1699f 687dbd6 e105e1e 8e41c14 2bc8ef5 922d7c8 3d410fb 687dbd6 9e61368 8e41c14 9e61368 687dbd6 9f3b8b8 fd0bd52 2bc8ef5 05d1ad8 dedb405 fe1fc2e 3c4de7d c547536 8356c3c 92bd8e5 ab2f443 fc596d7 8356c3c 8e29761 8356c3c ca65ca1 2bc8ef5 8356c3c fe1fc2e a7a9a88 fe1fc2e a7a9a88 fe1fc2e 81c159a fe8eb6d 5bd324a 815187b 10edf7a 815187b e1ca13f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os
import streamlit as st
from dotenv import load_dotenv
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import llamacpp
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler
from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain
from langchain.document_loaders import TextLoader
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory
from langchain.prompts import PromptTemplate
from langchain.vectorstores import Chroma
from utills import load_txt_documents, split_docs, load_uploaded_documents, retriever_from_chroma
from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter
from langchain_community.document_loaders.directory import DirectoryLoader
from HTML_templates import css, bot_template, user_template
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain import hub
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
lang_api_key = os.getenv("lang_api_key")
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus"
os.environ["LANGCHAIN_API_KEY"] = lang_api_key
os.environ["LANGCHAIN_PROJECT"] = "Lithuanian_Law_RAG_QA"
def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30,lambda_mult= 0.7):
model_name = "Alibaba-NLP/gte-base-en-v1.5"
model_kwargs = {'device': 'cpu',
"trust_remote_code" : 'True'}
encode_kwargs = {'normalize_embeddings': True}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# Check if vectorstore exists
if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
# Load the existing vectorstore
st.write("Vector store exists and is loaded")
vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
else:
# Load documents from the specified data path
st.write("Vector store doesnt exist and will be created now")
loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
docs = loader.load()
st.write("Docs loaded")
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap,
separators=["\n \n \n", "\n \n", "\n1" , "(?<=\. )", " ", ""]
)
split_docs = text_splitter.split_documents(docs)
# Create the vectorstore
vectorstore = Chroma.from_documents(
documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path
)
st.write("VectorStore is created")
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
return retriever
def main():
st.set_page_config(page_title="Lithuanian law documents RAG QA BOT ",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
st.header("Chat with multiple PDFs :books:")
st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.")
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Hi, I'm a chatbot who is based on respublic of Lithuania law documents. How can I help you?"}
]
st.markdown("Hi, I am Birute, chat assistant, based on republic of Lithuania law documents. You can choose below information retrieval type and how many documents you want to be retrieved.")
search_type = st.selectbox(
"Choose search type. Options are [Max marginal relevance search (mmr) , Similarity search (similarity). Default value (mmr)]",
options=["mmr", "similarity"],
index=0 # Default to "mmr"
)
k = st.select_slider(
"Select amount of documents to be retrieved. Default value (5): ",
options=list(range(2, 16)), # Creates a list [2, 3, 4, ..., 15]
value=5 # Default value
)
retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type=search_type, k=k, chunk_size=300, chunk_overlap=30)
if user_question := st.text_input("Ask a question about your documents:"):
handle_userinput(user_question,retriever)
def handle_userinput(user_question,retriever):
st.session_state.messages.append({"role": "user", "content": user_question})
st.chat_message("user").write(user_question)
docs = retriever.invoke(user_question)
with st.sidebar:
st.subheader("Your documents")
with st.spinner("Processing"):
for doc in docs:
st.write(f"Document: {doc}")
doc_txt = [doc.page_content for doc in docs]
rag_chain = create_conversational_rag_chain(retriever)
response = rag_chain.invoke({"context": doc_txt, "question": user_question})
st.session_state.messages.append({"role": "assistant", "content": response})
st.chat_message("assistant").write(response)
def create_conversational_rag_chain(retriever):
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = llamacpp.LlamaCpp(
model_path = "qwen2-0_5b-instruct-q8_0.gguf",
n_gpu_layers=0,
temperature=0.0,
n_ctx=22000,
n_batch=2000,
max_tokens=200,
repeat_penalty=1.7,
last_n_tokens_size = 200,
# callback_manager=callback_manager,
verbose=False,
)
from langchain import hub
prompt = hub.pull("rlm/rag-prompt")
rag_chain = prompt | llm | StrOutputParser()
return rag_chain
if __name__ == "__main__":
main() |