Update app.py
Browse files
app.py
CHANGED
|
@@ -20,9 +20,8 @@ from langchain_core.output_parsers import StrOutputParser
|
|
| 20 |
from langchain_core.runnables import RunnablePassthrough
|
| 21 |
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def create_retriever_from_chroma(data_path, vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20):
|
| 26 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 27 |
model_kwargs = {'device': 'cpu'}
|
| 28 |
encode_kwargs = {'normalize_embeddings': True}
|
|
@@ -82,19 +81,19 @@ def main():
|
|
| 82 |
st.session_state["messages"] = [
|
| 83 |
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
|
| 84 |
]
|
| 85 |
-
|
| 86 |
|
| 87 |
user_question = st.text_input("Ask a question about your documents:")
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
if user_question:
|
| 91 |
handle_userinput(user_question)
|
| 92 |
|
| 93 |
|
| 94 |
-
def handle_userinput(user_question):
|
| 95 |
st.session_state.messages.append({"role": "user", "content": user_question})
|
| 96 |
st.chat_message("user").write(user_question)
|
| 97 |
-
retriever = create_retriever_from_chroma(data_path, vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20)
|
| 98 |
docs = retriever.invoke(user_question)
|
| 99 |
|
| 100 |
doc_txt = [doc.page_content for doc in docs]
|
|
|
|
| 20 |
from langchain_core.runnables import RunnablePassthrough
|
| 21 |
|
| 22 |
|
| 23 |
+
def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20):
|
| 24 |
+
data_path = "data"
|
|
|
|
| 25 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 26 |
model_kwargs = {'device': 'cpu'}
|
| 27 |
encode_kwargs = {'normalize_embeddings': True}
|
|
|
|
| 81 |
st.session_state["messages"] = [
|
| 82 |
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
|
| 83 |
]
|
| 84 |
+
|
| 85 |
|
| 86 |
user_question = st.text_input("Ask a question about your documents:")
|
| 87 |
+
|
| 88 |
+
retriever = create_retriever_from_chroma(data_path, vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20)
|
| 89 |
|
| 90 |
if user_question:
|
| 91 |
handle_userinput(user_question)
|
| 92 |
|
| 93 |
|
| 94 |
+
def handle_userinput(user_question,retriever):
|
| 95 |
st.session_state.messages.append({"role": "user", "content": user_question})
|
| 96 |
st.chat_message("user").write(user_question)
|
|
|
|
| 97 |
docs = retriever.invoke(user_question)
|
| 98 |
|
| 99 |
doc_txt = [doc.page_content for doc in docs]
|