ArturG9 commited on
Commit
09d364f
·
verified ·
1 Parent(s): 2e8a8c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -19,7 +19,8 @@ from HTML_templates import css, bot_template, user_template
19
  from langchain_core.output_parsers import StrOutputParser
20
  from langchain_core.runnables import RunnablePassthrough
21
  from langchain import hub
22
-
 
23
 
24
  lang_api_key = os.getenv("lang_api_key")
25
 
@@ -31,7 +32,7 @@ os.environ["LANGCHAIN_PROJECT"] = "Chat with multiple PDFs"
31
 
32
 
33
  def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20):
34
- data_path = "data"
35
  model_name = "Alibaba-NLP/gte-base-en-v1.5"
36
  model_kwargs = {'device': 'cpu',
37
  "trust_remote_code" : 'True'}
@@ -85,6 +86,13 @@ def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='m
85
 
86
  retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
87
 
 
 
 
 
 
 
 
88
  rephrase_prompt = hub.pull("langchain-ai/chat-langchain-rephrase")
89
 
90
  ha_retriever = create_history_aware_retriever(llm, retriever, rephrase_prompt)
 
19
  from langchain_core.output_parsers import StrOutputParser
20
  from langchain_core.runnables import RunnablePassthrough
21
  from langchain import hub
22
+ from langchain.retrievers import ContextualCompressionRetriever
23
+ from langchain.retrievers.document_compressors import LLMChainExtractor
24
 
25
  lang_api_key = os.getenv("lang_api_key")
26
 
 
32
 
33
 
34
  def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20):
35
+ data_path = "data/"
36
  model_name = "Alibaba-NLP/gte-base-en-v1.5"
37
  model_kwargs = {'device': 'cpu',
38
  "trust_remote_code" : 'True'}
 
86
 
87
  retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
88
 
89
+ compressor = LLMChainExtractor.from_llm(llm)
90
+
91
+ compression_retriever = ContextualCompressionRetriever(
92
+ base_compressor=compressor,
93
+ base_retriever=retriever
94
+ )
95
+
96
  rephrase_prompt = hub.pull("langchain-ai/chat-langchain-rephrase")
97
 
98
  ha_retriever = create_history_aware_retriever(llm, retriever, rephrase_prompt)