Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Set page title and header | |
st.set_page_config(page_title="Text Summarizer", page_icon=":memo:") | |
st.header("Text Summarizer using Arjun9/bart_samsum") | |
# Load model and tokenizer | |
model_name = "Arjun9/bart_samsum" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Create text input area | |
input_text = st.text_area("Enter the text you want to summarize:", "") | |
# Create a function to generate summary | |
def generate_summary(text): | |
inputs = tokenizer.encode_plus(text, return_tensors="pt", max_length=512, truncation=True) | |
outputs = model.generate(inputs["input_ids"], num_beams=4, max_length=128, early_stopping=True) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return summary | |
# Display summary if input text is provided | |
if input_text: | |
summary = generate_summary(input_text) | |
st.write("**Summary:**", summary) |