Spaces:
Sleeping
Sleeping
File size: 1,000 Bytes
e600395 f6bad57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Set page title and header
st.set_page_config(page_title="Text Summarizer", page_icon=":memo:")
st.header("Text Summarizer using Arjun9/bart_samsum")
# Load model and tokenizer
model_name = "Arjun9/bart_samsum"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Create text input area
input_text = st.text_area("Enter the text you want to summarize:", "")
# Create a function to generate summary
def generate_summary(text):
inputs = tokenizer.encode_plus(text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(inputs["input_ids"], num_beams=4, max_length=128, early_stopping=True)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
# Display summary if input text is provided
if input_text:
summary = generate_summary(input_text)
st.write("**Summary:**", summary) |