Arjun9 commited on
Commit
e600395
·
verified ·
1 Parent(s): cb66179

Create application.py

Browse files
Files changed (1) hide show
  1. application.py +28 -0
application.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+
4
+ # Set page title and header
5
+ st.set_page_config(page_title="Text Summarizer", page_icon=":memo:")
6
+ st.header("Text Summarizer using Arjun9/bart_samsum")
7
+
8
+ # Load model and tokenizer
9
+ model_name = "Arjun9/bart_samsum"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
12
+
13
+ # Create text input area
14
+ input_text = st.text_area("Enter the text you want to summarize:", "")
15
+
16
+ # Create a function to generate summary
17
+ def generate_summary(text):
18
+ inputs = tokenizer.encode_plus(text, return_tensors="pt", max_length=512, truncation=True)
19
+ outputs = model.generate(inputs["input_ids"], num_beams=4, max_length=128, early_stopping=True)
20
+ summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
21
+ return summary
22
+
23
+ # Display summary if input text is provided
24
+ if input_text:
25
+ summary = generate_summary(input_text)
26
+ st.write("**Summary:**", summary)
27
+
28
+ streamlit run app.py