import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Set page title and header st.set_page_config(page_title="Text Summarizer", page_icon=":memo:") st.header("Text Summarizer using Arjun9/bart_samsum") # Load model and tokenizer model_name = "Arjun9/bart_samsum" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Create text input area input_text = st.text_area("Enter the text you want to summarize:", "") # Create a function to generate summary def generate_summary(text): inputs = tokenizer.encode_plus(text, return_tensors="pt", max_length=512, truncation=True) outputs = model.generate(inputs["input_ids"], num_beams=4, max_length=128, early_stopping=True) summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return summary # Display summary if input text is provided if input_text: summary = generate_summary(input_text) st.write("**Summary:**", summary)