|
import random |
|
|
|
import gradio as gr |
|
import networkx as nx |
|
|
|
from lib.graph_extract import triplextract, parse_triples |
|
from lib.visualize import create_graph, create_bokeh_plot, create_plotly_plot |
|
from lib.samples import snippets |
|
|
|
WORD_LIMIT = 300 |
|
|
|
def process_text(text, entity_types, predicates, layout_type, visualization_type): |
|
if not text: |
|
return None, None, "Please enter some text." |
|
|
|
words = text.split() |
|
if len(words) > WORD_LIMIT: |
|
return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}" |
|
|
|
entity_types = [et.strip() for et in entity_types.split(",") if et.strip()] |
|
predicates = [p.strip() for p in predicates.split(",") if p.strip()] |
|
|
|
if not entity_types: |
|
return None, None, "Please enter at least one entity type." |
|
if not predicates: |
|
return None, None, "Please enter at least one predicate." |
|
|
|
try: |
|
prediction = triplextract(text, entity_types, predicates) |
|
if prediction.startswith("Error"): |
|
return None, None, prediction |
|
|
|
entities, relationships = parse_triples(prediction) |
|
|
|
if not entities and not relationships: |
|
return None, None, "No entities or relationships found. Try different text or check your input." |
|
|
|
G = create_graph(entities, relationships) |
|
|
|
if visualization_type == 'Bokeh': |
|
fig = create_bokeh_plot(G, layout_type) |
|
else: |
|
fig = create_plotly_plot(G, layout_type) |
|
|
|
output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}" |
|
return G, fig, output_text |
|
except Exception as e: |
|
print(f"Error in process_text: {str(e)}") |
|
return None, None, f"An error occurred: {str(e)}" |
|
|
|
def update_graph(G, layout_type, visualization_type): |
|
if G is None: |
|
return None, "Please process text first." |
|
|
|
try: |
|
if visualization_type == 'Bokeh': |
|
fig = create_bokeh_plot(G, layout_type) |
|
else: |
|
fig = create_plotly_plot(G, layout_type) |
|
return fig, "" |
|
except Exception as e: |
|
print(f"Error in update_graph: {e}") |
|
return None, f"An error occurred while updating the graph: {str(e)}" |
|
|
|
def update_inputs(sample_name): |
|
sample = snippets[sample_name] |
|
return sample.text_input, sample.entity_types, sample.predicates |
|
|
|
with gr.Blocks(theme=gr.themes.Monochrome()) as demo: |
|
gr.Markdown("# Knowledge Graph Extractor") |
|
|
|
default_sample_name = random.choice(list(snippets.keys())) |
|
default_sample = snippets[default_sample_name] |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
sample_dropdown = gr.Dropdown(choices=list(snippets.keys()), label="Select Sample", value=default_sample_name) |
|
input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input) |
|
entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types) |
|
predicates = gr.Textbox(label="Predicates", value=default_sample.predicates) |
|
layout_type = gr.Dropdown(choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'], |
|
label="Layout Type", value='spring') |
|
visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh') |
|
process_btn = gr.Button("Process Text") |
|
with gr.Column(scale=2): |
|
output_graph = gr.Plot(label="Knowledge Graph") |
|
error_message = gr.Textbox(label="Textual Output") |
|
|
|
graph_state = gr.State(None) |
|
|
|
def process_and_update(text, entity_types, predicates, layout_type, visualization_type): |
|
G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type) |
|
return G, fig, output |
|
|
|
def update_graph_wrapper(G, layout_type, visualization_type): |
|
if G is not None: |
|
fig, _ = update_graph(G, layout_type, visualization_type) |
|
return fig |
|
|
|
sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates]) |
|
|
|
process_btn.click(process_and_update, |
|
inputs=[input_text, entity_types, predicates, layout_type, visualization_type], |
|
outputs=[graph_state, output_graph, error_message]) |
|
|
|
layout_type.change(update_graph_wrapper, |
|
inputs=[graph_state, layout_type, visualization_type], |
|
outputs=[output_graph]) |
|
|
|
visualization_type.change(update_graph_wrapper, |
|
inputs=[graph_state, layout_type, visualization_type], |
|
outputs=[output_graph]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True)import random |
|
|
|
import gradio as gr |
|
import networkx as nx |
|
|
|
from lib.graph_extract import triplextract, parse_triples |
|
from lib.visualize import create_graph, create_bokeh_plot, create_plotly_plot |
|
from lib.samples import snippets |
|
|
|
WORD_LIMIT = 300 |
|
|
|
def process_text(text, entity_types, predicates, layout_type, visualization_type): |
|
if not text: |
|
return None, None, "Please enter some text." |
|
|
|
words = text.split() |
|
if len(words) > WORD_LIMIT: |
|
return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}" |
|
|
|
entity_types = [et.strip() for et in entity_types.split(",") if et.strip()] |
|
predicates = [p.strip() for p in predicates.split(",") if p.strip()] |
|
|
|
if not entity_types: |
|
return None, None, "Please enter at least one entity type." |
|
if not predicates: |
|
return None, None, "Please enter at least one predicate." |
|
|
|
try: |
|
prediction = triplextract(text, entity_types, predicates) |
|
if prediction.startswith("Error"): |
|
return None, None, prediction |
|
|
|
entities, relationships = parse_triples(prediction) |
|
|
|
if not entities and not relationships: |
|
return None, None, "No entities or relationships found. Try different text or check your input." |
|
|
|
G = create_graph(entities, relationships) |
|
|
|
if visualization_type == 'Bokeh': |
|
fig = create_bokeh_plot(G, layout_type) |
|
else: |
|
fig = create_plotly_plot(G, layout_type) |
|
|
|
output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}" |
|
return G, fig, output_text |
|
except Exception as e: |
|
print(f"Error in process_text: {str(e)}") |
|
return None, None, f"An error occurred: {str(e)}" |
|
|
|
def update_graph(G, layout_type, visualization_type): |
|
if G is None: |
|
return None, "Please process text first." |
|
|
|
try: |
|
if visualization_type == 'Bokeh': |
|
fig = create_bokeh_plot(G, layout_type) |
|
else: |
|
fig = create_plotly_plot(G, layout_type) |
|
return fig, "" |
|
except Exception as e: |
|
print(f"Error in update_graph: {e}") |
|
return None, f"An error occurred while updating the graph: {str(e)}" |
|
|
|
def update_inputs(sample_name): |
|
sample = snippets[sample_name] |
|
return sample.text_input, sample.entity_types, sample.predicates |
|
|
|
with gr.Blocks(theme=gr.themes.Monochrome()) as demo: |
|
gr.Markdown("# Knowledge Graph Extractor") |
|
|
|
default_sample_name = random.choice(list(snippets.keys())) |
|
default_sample = snippets[default_sample_name] |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
sample_dropdown = gr.Dropdown(choices=list(snippets.keys()), label="Select Sample", value=default_sample_name) |
|
input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input) |
|
entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types) |
|
predicates = gr.Textbox(label="Predicates", value=default_sample.predicates) |
|
layout_type = gr.Dropdown(choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'], |
|
label="Layout Type", value='spring') |
|
visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh') |
|
process_btn = gr.Button("Process Text") |
|
with gr.Column(scale=2): |
|
output_graph = gr.Plot(label="Knowledge Graph") |
|
error_message = gr.Textbox(label="Textual Output") |
|
|
|
graph_state = gr.State(None) |
|
|
|
def process_and_update(text, entity_types, predicates, layout_type, visualization_type): |
|
G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type) |
|
return G, fig, output |
|
|
|
def update_graph_wrapper(G, layout_type, visualization_type): |
|
if G is not None: |
|
fig, _ = update_graph(G, layout_type, visualization_type) |
|
return fig |
|
|
|
sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates]) |
|
|
|
process_btn.click(process_and_update, |
|
inputs=[input_text, entity_types, predicates, layout_type, visualization_type], |
|
outputs=[graph_state, output_graph, error_message]) |
|
|
|
layout_type.change(update_graph_wrapper, |
|
inputs=[graph_state, layout_type, visualization_type], |
|
outputs=[output_graph]) |
|
|
|
visualization_type.change(update_graph_wrapper, |
|
inputs=[graph_state, layout_type, visualization_type], |
|
outputs=[output_graph]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |