Anupam251272 commited on
Commit
695e093
·
verified ·
1 Parent(s): f09e581

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +229 -0
app.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import gradio as gr
4
+ import networkx as nx
5
+
6
+ from lib.graph_extract import triplextract, parse_triples
7
+ from lib.visualize import create_graph, create_bokeh_plot, create_plotly_plot
8
+ from lib.samples import snippets
9
+
10
+ WORD_LIMIT = 300
11
+
12
+ def process_text(text, entity_types, predicates, layout_type, visualization_type):
13
+ if not text:
14
+ return None, None, "Please enter some text."
15
+
16
+ words = text.split()
17
+ if len(words) > WORD_LIMIT:
18
+ return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}"
19
+
20
+ entity_types = [et.strip() for et in entity_types.split(",") if et.strip()]
21
+ predicates = [p.strip() for p in predicates.split(",") if p.strip()]
22
+
23
+ if not entity_types:
24
+ return None, None, "Please enter at least one entity type."
25
+ if not predicates:
26
+ return None, None, "Please enter at least one predicate."
27
+
28
+ try:
29
+ prediction = triplextract(text, entity_types, predicates)
30
+ if prediction.startswith("Error"):
31
+ return None, None, prediction
32
+
33
+ entities, relationships = parse_triples(prediction)
34
+
35
+ if not entities and not relationships:
36
+ return None, None, "No entities or relationships found. Try different text or check your input."
37
+
38
+ G = create_graph(entities, relationships)
39
+
40
+ if visualization_type == 'Bokeh':
41
+ fig = create_bokeh_plot(G, layout_type)
42
+ else:
43
+ fig = create_plotly_plot(G, layout_type)
44
+
45
+ output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}"
46
+ return G, fig, output_text
47
+ except Exception as e:
48
+ print(f"Error in process_text: {str(e)}")
49
+ return None, None, f"An error occurred: {str(e)}"
50
+
51
+ def update_graph(G, layout_type, visualization_type):
52
+ if G is None:
53
+ return None, "Please process text first."
54
+
55
+ try:
56
+ if visualization_type == 'Bokeh':
57
+ fig = create_bokeh_plot(G, layout_type)
58
+ else:
59
+ fig = create_plotly_plot(G, layout_type)
60
+ return fig, ""
61
+ except Exception as e:
62
+ print(f"Error in update_graph: {e}")
63
+ return None, f"An error occurred while updating the graph: {str(e)}"
64
+
65
+ def update_inputs(sample_name):
66
+ sample = snippets[sample_name]
67
+ return sample.text_input, sample.entity_types, sample.predicates
68
+
69
+ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
70
+ gr.Markdown("# Knowledge Graph Extractor")
71
+
72
+ default_sample_name = random.choice(list(snippets.keys()))
73
+ default_sample = snippets[default_sample_name]
74
+
75
+ with gr.Row():
76
+ with gr.Column(scale=1):
77
+ sample_dropdown = gr.Dropdown(choices=list(snippets.keys()), label="Select Sample", value=default_sample_name)
78
+ input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input)
79
+ entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types)
80
+ predicates = gr.Textbox(label="Predicates", value=default_sample.predicates)
81
+ layout_type = gr.Dropdown(choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'],
82
+ label="Layout Type", value='spring')
83
+ visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh')
84
+ process_btn = gr.Button("Process Text")
85
+ with gr.Column(scale=2):
86
+ output_graph = gr.Plot(label="Knowledge Graph")
87
+ error_message = gr.Textbox(label="Textual Output")
88
+
89
+ graph_state = gr.State(None)
90
+
91
+ def process_and_update(text, entity_types, predicates, layout_type, visualization_type):
92
+ G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type)
93
+ return G, fig, output
94
+
95
+ def update_graph_wrapper(G, layout_type, visualization_type):
96
+ if G is not None:
97
+ fig, _ = update_graph(G, layout_type, visualization_type)
98
+ return fig
99
+
100
+ sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates])
101
+
102
+ process_btn.click(process_and_update,
103
+ inputs=[input_text, entity_types, predicates, layout_type, visualization_type],
104
+ outputs=[graph_state, output_graph, error_message])
105
+
106
+ layout_type.change(update_graph_wrapper,
107
+ inputs=[graph_state, layout_type, visualization_type],
108
+ outputs=[output_graph])
109
+
110
+ visualization_type.change(update_graph_wrapper,
111
+ inputs=[graph_state, layout_type, visualization_type],
112
+ outputs=[output_graph])
113
+
114
+ if __name__ == "__main__":
115
+ demo.launch(share=True)import random
116
+
117
+ import gradio as gr
118
+ import networkx as nx
119
+
120
+ from lib.graph_extract import triplextract, parse_triples
121
+ from lib.visualize import create_graph, create_bokeh_plot, create_plotly_plot
122
+ from lib.samples import snippets
123
+
124
+ WORD_LIMIT = 300
125
+
126
+ def process_text(text, entity_types, predicates, layout_type, visualization_type):
127
+ if not text:
128
+ return None, None, "Please enter some text."
129
+
130
+ words = text.split()
131
+ if len(words) > WORD_LIMIT:
132
+ return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}"
133
+
134
+ entity_types = [et.strip() for et in entity_types.split(",") if et.strip()]
135
+ predicates = [p.strip() for p in predicates.split(",") if p.strip()]
136
+
137
+ if not entity_types:
138
+ return None, None, "Please enter at least one entity type."
139
+ if not predicates:
140
+ return None, None, "Please enter at least one predicate."
141
+
142
+ try:
143
+ prediction = triplextract(text, entity_types, predicates)
144
+ if prediction.startswith("Error"):
145
+ return None, None, prediction
146
+
147
+ entities, relationships = parse_triples(prediction)
148
+
149
+ if not entities and not relationships:
150
+ return None, None, "No entities or relationships found. Try different text or check your input."
151
+
152
+ G = create_graph(entities, relationships)
153
+
154
+ if visualization_type == 'Bokeh':
155
+ fig = create_bokeh_plot(G, layout_type)
156
+ else:
157
+ fig = create_plotly_plot(G, layout_type)
158
+
159
+ output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}"
160
+ return G, fig, output_text
161
+ except Exception as e:
162
+ print(f"Error in process_text: {str(e)}")
163
+ return None, None, f"An error occurred: {str(e)}"
164
+
165
+ def update_graph(G, layout_type, visualization_type):
166
+ if G is None:
167
+ return None, "Please process text first."
168
+
169
+ try:
170
+ if visualization_type == 'Bokeh':
171
+ fig = create_bokeh_plot(G, layout_type)
172
+ else:
173
+ fig = create_plotly_plot(G, layout_type)
174
+ return fig, ""
175
+ except Exception as e:
176
+ print(f"Error in update_graph: {e}")
177
+ return None, f"An error occurred while updating the graph: {str(e)}"
178
+
179
+ def update_inputs(sample_name):
180
+ sample = snippets[sample_name]
181
+ return sample.text_input, sample.entity_types, sample.predicates
182
+
183
+ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
184
+ gr.Markdown("# Knowledge Graph Extractor")
185
+
186
+ default_sample_name = random.choice(list(snippets.keys()))
187
+ default_sample = snippets[default_sample_name]
188
+
189
+ with gr.Row():
190
+ with gr.Column(scale=1):
191
+ sample_dropdown = gr.Dropdown(choices=list(snippets.keys()), label="Select Sample", value=default_sample_name)
192
+ input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input)
193
+ entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types)
194
+ predicates = gr.Textbox(label="Predicates", value=default_sample.predicates)
195
+ layout_type = gr.Dropdown(choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'],
196
+ label="Layout Type", value='spring')
197
+ visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh')
198
+ process_btn = gr.Button("Process Text")
199
+ with gr.Column(scale=2):
200
+ output_graph = gr.Plot(label="Knowledge Graph")
201
+ error_message = gr.Textbox(label="Textual Output")
202
+
203
+ graph_state = gr.State(None)
204
+
205
+ def process_and_update(text, entity_types, predicates, layout_type, visualization_type):
206
+ G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type)
207
+ return G, fig, output
208
+
209
+ def update_graph_wrapper(G, layout_type, visualization_type):
210
+ if G is not None:
211
+ fig, _ = update_graph(G, layout_type, visualization_type)
212
+ return fig
213
+
214
+ sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates])
215
+
216
+ process_btn.click(process_and_update,
217
+ inputs=[input_text, entity_types, predicates, layout_type, visualization_type],
218
+ outputs=[graph_state, output_graph, error_message])
219
+
220
+ layout_type.change(update_graph_wrapper,
221
+ inputs=[graph_state, layout_type, visualization_type],
222
+ outputs=[output_graph])
223
+
224
+ visualization_type.change(update_graph_wrapper,
225
+ inputs=[graph_state, layout_type, visualization_type],
226
+ outputs=[output_graph])
227
+
228
+ if __name__ == "__main__":
229
+ demo.launch(share=True)